Hybrid light-emitting devices for the straightforward readout of chiral information.

bipolar electrochemistry chiral recognition conducting polymers wireless light emission

Journal

Chirality
ISSN: 1520-636X
Titre abrégé: Chirality
Pays: United States
ID NLM: 8914261

Informations de publication

Date de publication:
12 2021
Historique:
revised: 17 09 2021
received: 02 07 2021
accepted: 20 09 2021
pubmed: 8 10 2021
medline: 8 10 2021
entrez: 7 10 2021
Statut: ppublish

Résumé

Bipolar electrochemistry has gained increasing attention in recent years as an attractive transduction concept in analytical chemistry in general and, more specifically, in the frame of chiral recognition. Herein, we use this concept of wireless electrochemistry, based on the combination of the enantioselective oxidation of a chiral probe with the emission of light from a light-emitting diode (LED), as an alternative for an easy and straightforward readout of the presence of chiral molecules in solution. A hybrid polymer-microelectronic device was designed, using an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) and a polypyrrole strip as the anode and cathode of a miniaturized LED. The wireless induced redox reactions trigger light emission when the probe with the right chirality is present in solution, whereas no light emission is observed for the opposite enantiomer. The average light intensity shows a linear correlation with the analyte concentration, and the concept opens the possibility to quantify the enantiomeric excess in mixtures of the molecular antipodes.

Identifiants

pubmed: 34617330
doi: 10.1002/chir.23370
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

875-882

Subventions

Organisme : H2020 European Research Council
ID : 741251
Organisme : H2020 European Research Council (ERC)

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Dong L, Liu X, Xu H, et al. Improved chiral electrochemical recognition of tryptophan enantiomers based on three-dimensional molecularly imprinted overoxidized polypyrrole/MnO2/carbon felt composites. Chirality. 2019;31(11):917-922.
Yu LY, Liu Q, Wu XW, Jiang XY, Yu JG, Chen XQ. Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube-chitosan composite modified glassy carbon electrode. RSC Adv. 2015;5(119):98020-98025.
Iacob BC, Bodoki E, Florea A, Bodoki AE, Oprean R. Simultaneous enantiospecific recognition of several β-blocker enantiomers using molecularly imprinted polymer-based electrochemical sensor. Anal Chem. 2015;87(5):2755-2763.
Niu X, Yang X, Li H, Shi Q, Wang K. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Chirality. 2021;33(5):248-260.
Mogi I, Morimoto R, Aogaki R. Surface chirality effects induced by magnetic fields. Curr Opin Electrochem. 2018;7:1-6.
Mogi I, Watanabe K. Electrocatalytic chirality on magneto-electropolymerized polyaniline electrodes. J Solid State Electrochem. 2007;11(6):751-756.
Ilie-Mihai RM, Stefan-van Staden RI, Magerusan L, Coros M, Pruneanu S. Enantioanalysis of tryptophan in whole blood samples using stochastic sensors-a screening test for gastric cancer. Chirality. 2020;32(2):215-222.
Ibanez JG, Rincon ME, Gurierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem Rev. 2018;118(9):4731-4816.
Mavré F, Anand RK, Laws DR, et al. Feature bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal Chem. 2010;82(21):8766-8774.
Shida N, Zhou Y, Inagi S. Bipolar electrochemistry: a powerful tool for electrifying functional material synthesis. Acc Chem Res. 2019;52(9):2598-2608.
Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;(52):10438-10456.
Sequeira CAC, Cardoso DSP, Gameiro MLF. Bipolar electrochemistry, a focal point of future research. Chem Eng Commun. 2016;203(8):1001-1008.
Koefoed L, Pedersen SU, Daasbjerg K. Bipolar electrochemistry-a wireless approach for electrode reactions. Curr Opin Electrochem. 2017;2(1):13-17.
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. Annu Rev Anal Chem. 2021;14(1):65-86.
Shida N, Inagi S. Bipolar electrochemistry in synergy with electrophoresis: electric field-driven electrosynthesis of anisotropic polymeric materials. Chem Commun. 2020;56(92):14327-14336.
Assavapanumat S, Gupta B, Salinas G, Goudeau B, Wattanakit C, Kuhn A. Chiral platinum-polypyrrole hybrid films as efficient enantioselective actuators. Chem Commun. 2019;55(73):10956-10959.
Arnaboldi S, Gupta B, Benincori T, Bonetti G, Cirilli R, Kuhn A. Absolute chiral recognition with hybrid wireless electrochemical actuators. Anal Chem. 2020;92(14):10042-10047.
Arnaboldi A, Salinas G, Karajic A, et al. Direct dynamic readout of molecular chirality with autonomous enzyme driven swimmers. Nat Chem. 2021; in press. https://doi.org/10.1038/s41557-021-00798-9
Benincori T, Appoloni G, Mussini PR, et al. Searching for models exhibiting high circularly polarized luminescence: electroactive inherently chiral oligothiophenes. Chem Eur J. 2018;24(43):11082-11093.
Arnaboldi S, Benincori T, Cirilli R, et al. Inherently chiral electrodes: the tool for chiral voltammetry. Chem Sci. 2015;6(3):1706-1711.
Malacrida C, Scapinello L, Cirilli R, et al. In situ electrochemical investigations of inherently chiral 2,2′-biindole architectures with oligothiophene terminals. ChemElectroChem. 2021;8(17):3250-3261.
Benincori T, Gámez-Valenzuela S, Goll M, et al. Electrochemical studies of a new low-band gap inherently chiral EDOT-based oligothiophene. Electrochim Acta. 2018;284:513-525.
Arnaboldi S, Gupta B, Benincori T, Bonetti G, Cirilli R, Kuhn A. Large scale chirality transduction with functional molecular materials. Chem Mater. 2020;32(24):10663-10669.
Arnaboldi S, Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A. Bipolar electrochemical measurement of enantiomeric excess with inherently chiral polymer actuators. ACS Meas Au. 2021. In press. https://doi.org/10.1021/acsmeasuresciau.1c00011
Jansod S, Cuartero M, Cherubini T, Bakker E. Colorimetric readout for potentiometric sensors with closed bipolar electrodes. Anal Chem. 2018;90(11):6376-6379.
Roark B, Tan JA, Ivanina A, et al. Fluorescence blinking as an output signal for biosensing. ACS Sens. 2016;1(11):1295-1300.
Villani E, Shinda N, Inagi S. Electrogenerated chemiluminescence of luminol on wireless conducting polymer films. Electrochim Acta. 2021;389(1):138718.
Villani E, Inagi S. Mapping the distribution of potential gradient in bipolar electrochemical systems through luminol electrochemiluminescence imaging. Anal Chem. 2021;93(23):8152-8160.
Anaya M, Rand BP, Holmes RJ, et al. Best practices for measuring emerging light-emitting diode technologies. Nat Photonics. 2019;13(12):818-821.
Flaschka H, McKeithan C, Barnes R. Light emitting diodes and phototransistors in photometric modules. Anal Lett. 1973;6(7):585-594.
Schwarz MA, Hauser PC. Recent developments in detection methods for microfabricated analytical devices. Lab Chip. 2001;1(1):1-6.
Salinas G, Dauphin AL, Colin C, et al. Chemo- and magnetotaxis of self-propelled light-emitting chemo-electronic swimmers. Angew Chem Int Ed. 2020;59(19):7508-7513.
Salinas G, Pavel IA, Sojic N, Kuhn A. Electrochemistry-based light-emitting mobile systems. ChemElectroChem. 2020;7(24):4853-4862.
Chang ST, Paunov VN, Petsev DN, Velev OD. Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat Mater. 2007;6(3):235-240.
Sharma R, Velev OD. Remote steering of self-propelling microcircuits by modulated electric field. Adv Funct Mater. 2015;25(34):5512-5519.
Roche J, Carrara S, Sanchez J, et al. Wireless powering of e-swimmers. Sci Rep. 2015;4(1):6705.
Dauphin AL, Arbault S, Kuhn A, Sojic N, Bouffier L. Remote actuation of a light-emitting device based on magnetic stirring and wireless electrochemistry. ChemPhysChem. 2020;21(7):600-604.
Gupta B, Alfonso MC, Zhang L, et al. Wireless coupling of conducting polymer actuators with light emission. ChemPhysChem. 2019;20(7):941-945.
Sannicolò F, Arnaboldi S, Benincori T, et al. Potential-driven chirality manifestations and impressive enantioselectivity by inherently chiral electroactive organic films. Angew Chem Int Ed. 2014;53(10):2623-2627.
Otero TF, Alfaro M, Martinez V, Perez MA, Martinez JG. Biomimetic structural electrochemistry from conducting polymers: processes, charges, and energies. coulovoltammetric results from films on metals revisited. Adv Funct Mater. 2013;23:3929-3940.
Otero TF, Martinez JG, Fuchiwaki M, Valero L. Structural electrochemistry from freestanding polypyrrole films: full hydrogen inhibition from aqueous solutions. Adv Funct Mater. 2014;24(9):1265-1274.
Heinze J, Frontana-Uribe BA, Ludwigs S. Electrochemistry of conducting polymers. Persistent models and new concepts. Chem Rev. 2010;110(8):4724-4771.
Fuchiwakia M, Martinez JG, Otero TF. Asymmetric bilayer muscles. cooperative and antagonist actuation. Electrochim Acta. 2016;195:9-18.
Arnaboldi S, Benincori T, Cirilli R, et al. Inherently chiral thiophene-based electrodes at work : a screening of enantioselection ability towards a series of pharmaceutically relevant phenolic or catecholic amino acids, amino esters and amine. Anal Bioanal Chem. 2016;408(26):7243-7254.

Auteurs

Gerardo Salinas (G)

Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France.

Serena Arnaboldi (S)

Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France.
Dip. Di Chimica, Univ. degli Studi di Milano, Milan, Italy.

Giorgia Bonetti (G)

Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy.

Roberto Cirilli (R)

Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Rome, Italy.

Tiziana Benincori (T)

Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy.

Alexander Kuhn (A)

Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France.

Classifications MeSH