Parkinson's disease affects the neural alpha oscillations associated with speech-in-noise processing.
Parkinson's disease
alpha oscillations
electroencephalography
speech-in-noise processing
Journal
The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
03
09
2021
received:
27
05
2021
accepted:
21
09
2021
pubmed:
8
10
2021
medline:
18
11
2021
entrez:
7
10
2021
Statut:
ppublish
Résumé
Parkinson's disease (PD) has increasingly been associated with auditory dysfunction, including alterations regarding the control of auditory information processing. Although these alterations may interfere with the processing of speech in degraded listening conditions, behavioural studies have generally found preserved speech-in-noise recognition in PD. However, behavioural speech audiometry does not capture the neurophysiological mechanisms supporting speech-in-noise processing. Therefore, the aim of this study was to investigate the neural oscillatory mechanisms associated with speech-in-noise processing in PD. Twelve persons with PD and 12 age- and gender-matched healthy controls (HCs) were included in this study. Persons with PD were studied in the medication off condition. All subjects underwent an audiometric screening and performed a sentence-in-noise recognition task under simultaneous electroencephalography (EEG) recording. Behavioural speech recognition scores and self-reported ratings of effort, performance, and motivation were collected. Time-frequency analysis of EEG data revealed no significant difference between persons with PD and HCs regarding delta-theta (2-8 Hz) inter-trial phase coherence to noise and sentence onset. In contrast, significantly increased alpha (8-12 Hz) power was found in persons with PD compared with HCs during the sentence-in-noise recognition task. Behaviourally, persons with PD demonstrated significantly decreased speech recognition scores, whereas no significant differences were found regarding effort, performance, and motivation ratings. These results suggest that persons with PD allocate more cognitive resources to support speech-in-noise processing. The interpretation of this finding is discussed in the context of a top-down mediated compensation mechanism for inefficient filtering and degradation of auditory input in PD.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7355-7376Informations de copyright
© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Références
Aotsuka, A., Weate, S. J., Drake, M. E. Jr., & Paulson, G. W. (1996). Event-related potentials in Parkinson's disease. Electromyography and Clinical Neurophysiology, 36(4), 215-220.
Artieda, J., Pastor, M. A., Lacruz, F., & Obeso, J. A. (1992). Temporal discrimination is abnormal in Parkinson's disease. Brain, 115(1), 199-210. https://doi.org/10.1093/brain/115.1.199
Babiloni, C., del Percio, C., Lizio, R., Noce, G., Lopez, S., Soricelli, A., Ferri, R., Pascarelli, M. T., Catania, V., Nobili, F., Arnaldi, D., Famà, F., Orzi, F., Buttinelli, C., Giubilei, F., Bonanni, L., Franciotti, R., Onofrj, M., Stirpe, P., … de Pandis, M. F. (2019). Levodopa may affect cortical excitability in Parkinson's disease patients with cognitive deficits as revealed by reduced activity of cortical sources of resting state electroencephalographic rhythms. Neurobiology of Aging, 73, 9-20. https://doi.org/10.1016/j.neurobiolaging.2018.08.010
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561-571. https://doi.org/10.1001/archpsyc.1961.01710120031004
Benoit, C. E., Dalla Bella, S., Farrugia, N., Obrig, H., Mainka, S., & Kotz, S. A. (2014). Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease. Frontiers in Human Neuroscience, 8, 494. https://doi.org/10.3389/fnhum.2014.00494
Bertram, M., Warren, C. V., Lange, F., Seer, C., Steinke, A., Wegner, F., Schrader, C., Dressler, D., Dengler, R., & Kopp, B. (2020). Dopaminergic modulation of novelty repetition in Parkinson's disease: A study of P3 event-related brain potentials. Clinical Neurophysiology, 131(12), 2841-2850. https://doi.org/10.1016/j.clinph.2020.09.013
Besser, J., Stropahl, M., Urry, E., & Launer, S. (2018). Comorbidities of hearing loss and the implications of multimorbidity for audiological care. Hearing Research, 369, 3-14. https://doi.org/10.1016/j.heares.2018.06.008
Bidet-Caulet, A., Bottemanne, L., Fonteneau, C., Giard, M. H., & Bertrand, O. (2015). Brain dynamics of distractibility: Interaction between top-down and bottom-up mechanisms of auditory attention. Brain Topography, 28(3), 423-436. https://doi.org/10.1007/s10548-014-0354-x
Boutros, N. N., & Belger, A. (1999). Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biological Psychiatry, 45(7), 917-922. https://doi.org/10.1016/S0006-3223(98)00253-4
Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A., & Bell, M. (2004). Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Research, 126(3), 203-215. https://doi.org/10.1016/j.psychres.2004.01.007
Buzsáki, G. (2006). Rhythms of the brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
Carson, N., Leach, L., & Murphy, K. J. (2018). A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. International Journal of Geriatric Psychiatry, 33(2), 379-388. https://doi.org/10.1002/gps.4756
Cavanagh, J. F., Kumar, P., Mueller, A. A., Richardson, S. P., & Mueen, A. (2018). Diminished EEG habituation to novel events effectively classifies Parkinson's patients. Clinical Neurophysiology, 129(2), 409-418. https://doi.org/10.1016/j.clinph.2017.11.023
Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT Press. https://doi.org/10.7551/mitpress/9609.001.0001
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. https://doi.org/10.1038/nrn755
De Groote, E., Bockstael, A., Botteldooren, D., Santens, P., & De Letter, M. (2021a). Evaluation of multi-feature auditory deviance detection in Parkinson's disease: A mismatch negativity study. Journal of Neural Transmission, 128, 645-657. https://doi.org/10.1007/s00702-021-02341-z
De Groote, E., Bockstael, A., Botteldooren, D., Santens, P., & De Letter, M. (2021b). The effect of Parkinson's disease on otoacoustic emissions and efferent suppression of transient evoked otoacoustic emissions. Journal of Speech, Language, and Hearing Research, 164, 1354-1368. https://doi.org/10.1044/2020_JSLHR-20-00594
De Groote, E., De Keyser, K., Bockstael, A., Botteldooren, D., Santens, P., & De Letter, M. (2020). Central auditory processing in Parkinsonian disorders: A systematic review. Neuroscience & Biobehavioral Reviews, 113, 111-132. https://doi.org/10.1016/j.neubiorev.2020.03.001
De Keyser, K., De Letter, M., De Groote, E., Santens, P., Talsma, D., Botteldooren, D., & Bockstael, A. (2019). Systematic audiological assessment of auditory functioning in patients with Parkinson's disease. Journal of Speech, Language, and Hearing Research, 62(12), 4564-4577. https://doi.org/10.1044/2019_JSLHR-H-19-0097
De Keyser, K., De Letter, M., Santens, P., Talsma, D., Botteldooren, D., & Bockstael, A. (2021). Neurophysiological investigation of auditory intensity dependence in patients with Parkinson's disease. Journal of Neural Transmission, 128(3), 345-356. https://doi.org/10.1007/s00702-021-02305-3
Defer, G. L., Widner, H., Marié, R. M., Rémy, P., & Levivier, M. (1999). Core assessment program for surgical interventional therapies in Parkinson's disease (CAPSIT-PD). Movement Disorders: Official Journal of the Movement Disorder Society, 14(4), 572-584. https://doi.org/10.1002/1531-8257(199907)14:4<572::AID-MDS1005>3.0.CO;2-C
Dimitrijevic, A., Smith, M. L., Kadis, D. S., & Moore, D. R. (2017). Cortical alpha oscillations predict speech intelligibility. Frontiers in Human Neuroscience, 11, 88. https://doi.org/10.3389/fnhum.2017.00088
Eckert, M. A., Teubner-Rhodes, S., & Vaden, K. I. Jr. (2016). Is listening in noise worth it? The neurobiology of speech recognition in challenging listening conditions. Ear and Hearing, 37(Suppl 1), 101S-110S. https://doi.org/10.1097/AUD.0000000000000300
Eckert, M. A., Walczak, A., Ahlstrom, J., Denslow, S., Horwitz, A., & Dubno, J. R. (2008). Age-related effects on word recognition: Reliance on cognitive control systems with structural declines in speech-responsive cortex. Journal of the Association for Research in Otolaryngology, 9(2), 252-259. https://doi.org/10.1007/s10162-008-0113-3
Escera, C., Alho, K., Schröger, E., & Winkler, I. W. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology and Neurotology, 5(3-4), 151-166. https://doi.org/10.1159/000013877
Field, A. (2013). Discovering statistics using IBM SPSS statistics. (Vol. 4), SAGE Publications Ltd.
Fitzgerald, K., & Todd, J. (2020). Making sense of mismatch negativity. Frontiers in Psychiatry, 11, 468. https://doi.org/10.3389/fpsyt.2020.00468
Folmer, R. L., Vachhani, J. J., Theodoroff, S. M., Ellinger, R., & Riggins, A. (2017). Auditory processing abilities of Parkinson's disease patients. BioMed Research International, 2017, 1-10. https://doi.org/10.1155/2017/2618587
Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154. https://doi.org/10.3389/fpsyg.2011.00154
Francis, A. L., & Love, J. (2020). Listening effort: Are we measuring cognition or affect, or both? Wiley Interdisciplinary Reviews: Cognitive Science, 11(1), e1514. https://doi.org/10.1002/wcs.1514
Freedman, R., Waldo, M., Bickford-Wimer, P., & Nagamoto, H. (1991). Elementary neuronal dysfunctions in schizophrenia. Schizophrenia Research, 4(2), 233-243. https://doi.org/10.1016/0920-9964(91)90035-P
Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention-Focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437-455. https://doi.org/10.1016/j.conb.2007.07.011
Gatehouse, S., & Noble, W. (2004). The Speech, Spatial and Qualities of Hearing Scale (SSQ). International Journal of Audiology, 43(2), 85-99. https://doi.org/10.1080/14992020400050014
Georgiev, D., Jahanshahi, M., Dreo, J., Čuš, A., Pirtošek, Z., & Repovš, G. (2015). Dopaminergic medication alters auditory distractor processing in Parkinson's disease. Acta Psychologica, 156, 45-56. https://doi.org/10.1016/j.actpsy.2015.02.001
Giraud, A. L., Garnier, S., Micheyl, C., Lina, G., Chays, A., & Chéry-Croze, S. (1997). Auditory efferents involved in speech-in-noise intelligibility. Neuroreport, 8(7), 1779-1783. https://doi.org/10.1097/00001756-199705060-00042
Goetz, C. G., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stebbins, G. T., Stern, M. B., Tilley, B. C., Dodel, R., Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A. E., Lees, A., Leurgans, S., LeWitt, P. A., Nyenhuis, D., Olanow, C. W., … LaPelle, N. (2007). Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Movement Disorders, 22(1), 41-47. https://doi.org/10.1002/mds.21198
Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell, C., Giladi, N., Holloway, R. G., Moore, C. G., Wenning, G. K., Yahr, M. D., & Seidl, L. (2004). Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations the Movement Disorder Society Task Force on rating scales for Parkinson's disease. Movement Disorders, 19(9), 1020-1028. https://doi.org/10.1002/mds.20213
Gökay, N. Y., Gündüz, B., Söke, F., & Karamert, R. (2021). Evaluation of efferent auditory system and hearing quality in Parkinson's disease: Is the difficulty in speech understanding in complex listening conditions related to neural degeneration or aging? Journal of Speech, Language, and Hearing Research, 64(1), 263-271. https://doi.org/10.1044/2020_JSLHR-20-00337
Golubic, S. J., Jurasic, M. J., Susac, A., Huonker, R., Gotz, T., & Haueisen, J. (2019). Attention modulates topology and dynamics of auditory sensory gating. Human Brain Mapping, 40(10), 2981-2994. https://doi.org/10.1002/hbm.24573
Gordon-Salant, S., Shader, M. J., & Wingfield, A. (2020). Age-related changes in speech understanding: Peripheral versus cognitive influences. In Aging and hearing (pp. 199-230). Springer. doi: 10.1007/978-3-030-49367-7_9
Güdücü, Ç., Eskicioğlu, E., Öz, D., Öniz, A., Çakmur, R., & Özgören, M. (2019). Auditory brain oscillatory responses in drug-naïve patients with Parkinson's disease. Neuroscience Letters, 701, 170-174. https://doi.org/10.1016/j.neulet.2019.02.039
Gulberti, A., Hamel, W., Buhmann, C., Boelmans, K., Zittel, S., Gerloff, C., Westphal, M., Engel, A. K., Schneider, T. R., & Moll, C. K. E. (2015). Subthalamic deep brain stimulation improves auditory sensory gating deficit in Parkinson's disease. Clinical Neurophysiology, 126(3), 565-574. https://doi.org/10.1016/j.clinph.2014.06.046
Harrington, D. L., Haaland, K. Y., & Hermanowitz, N. (1998). Temporal processing in the basal ganglia. Neuropsychology, 12(1), 3-12. https://doi.org/10.1037/0894-4105.12.1.3
Heldmann, M., Teichmann, S., Al-Khaled, M., Brüggemann, N., & Münte, T. F. (2019). Processing of local and global auditory deviants in Parkinson disease: Electrophysiological evidence for enhanced attention capture. Cognitive and Behavioral Neurology, 32(1), 31-38. https://doi.org/10.1097/WNN.0000000000000185
Herzog, J., Weiss, P. H., Assmus, A., Wefer, B., Seif, C., Braun, P. M., Pinsker, M. O., Herzog, H., Volkmann, J., Deuschl, G., & Fink, G. R. (2008). Improved sensory gating of urinary bladder afferents in Parkinson's disease following subthalamic stimulation. Brain, 131(1), 132-145. https://doi.org/10.1093/brain/awm254
Houben, R., Koopman, J., Luts, H., Wagener, K. C., Van Wieringen, A., Verschuure, H., & Dreschler, W. A. (2014). Development of a Dutch matrix sentence test to assess speech intelligibility in noise. International Journal of Audiology, 53(10), 760-763. https://doi.org/10.3109/14992027.2014.920111
Jafari, Z., Kolb, B. E., & Mohajerani, M. H. (2020). Auditory dysfunction in Parkinson's disease. Movement Disorders, 35(4), 537-550. https://doi.org/10.1002/mds.28000
Jayakody, D. M. P., Friedlan, P. L., Martins, R. N., & Sohrab, H. R. (2018). Impact of aging on the auditory system and related cognitive functions: A narrative review. Frontiers in Neuroscience, 12, 1-16. https://doi.org/10.3389/fnins.2018.00125
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186
Jerger, J. (1970). Clinical experience with impedance audiometry. Archives of Otolaryngology, 92(4), 311-324. https://doi.org/10.1001/archotol.1970.04310040005002
Kähkönen, S., Ahveninen, J., Jääskeläinen, I. P., Kaakkola, S., Näätänen, R., Huttunen, J., & Pekkonen, E. (2001). Effects of haloperidol on selective attention: a combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology, 25(4), 498-504. https://doi.org/10.1016/S0893-133X(01)00255-X
Karayanidis, F., Andrews, S., Ward, P. B., & Michie, P. T. (1995). ERP indices of auditory selective attention in aging and Parkinson's disease. Psychophysiology, 32(4), 335-350. https://doi.org/10.1111/j.1469-8986.1995.tb01216.x
Kaya, E. M., & Elhilali, M. (2014). Investigating bottom-up auditory attention. Frontiers in Human Neuroscience, 8, 327. https://doi.org/10.3389/fnhum.2014.00327
Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. Journal of Neuroscience, 30(2), 620-628. https://doi.org/10.1523/JNEUROSCI.3631-09.2010
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
Kramer, S. E., Teunissen, C. E., & Zekveld, A. A. (2016). Cortisol, chromogranin A, and pupillary responses evoked by speech recognition tasks in normally hearing and hard-of-hearing listeners: A pilot study. Ear and Hearing, 37, 126S-135S. https://doi.org/10.1097/AUD.0000000000000311
Kuchinsky, S. E., & Vaden, K. I. (2020). Aging, hearing loss, and listening effort: Imaging studies of the aging listener. In Aging and hearing (pp. 231-256). Springer. doi: 10.1007/978-3-030-49367-7_10
Lewald, J., Schirm, S. N., & Schwarz, M. (2004). Sound lateralization in Parkinson's disease. Cognitive Brain Research, 21(3), 335-341. https://doi.org/10.1016/j.cogbrainres.2004.06.008
Lijffijt, M., Lane, S. D., Meier, S. L., Boutros, N. N., Burroughs, S., Steinberg, J. L., Gerard Moeller, F., & Swann, A. C. (2009). P50, N100, and P200 sensory gating: Relationships with behavioral inhibition, attention, and working memory. Psychophysiology, 46(5), 1059-1068. https://doi.org/10.1111/j.1469-8986.2009.00845.x
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.
Lukhanina, E., Berezetskaya, N., & Karaban, I. (2011). Paired-pulse inhibition in the auditory cortex in Parkinson's disease and its dependence on clinical characteristics of the patients. Parkinson's Disease, 2011, 1-8. https://doi.org/10.4061/2011/342151
McGarrigle, R., Munro, K. J., Dawes, P., Stewart, A. J., Moore, D. R., Barry, J. G., & Amitay, S. (2014). Listening effort and fatigue: What exactly are we measuring? A British Society of Audiology Cognition in Hearing Special Interest Group ‘white paper’. International Journal of Audiology, 53(7), 433-445. https://doi.org/10.3109/14992027.2014.890296
McMahon, C. M., Boisvert, I., de Lissa, P., Granger, L., Ibrahim, R., Lo, C. Y., Miles, K., & Graham, P. L. (2016). Monitoring alpha oscillations and pupil dilation across a performance-intensity function. Frontiers in Psychology, 7, 745. https://doi.org/10.3389/fpsyg.2016.00745
Mertes, I. B., Johnson, K. M., & Dinger, Z. A. (2019). Olivocochlear efferent contributions to speech-in-noise recognition across signal-to-noise ratios. The Journal of the Acoustical Society of America, 145(3), 1529-1540. https://doi.org/10.1121/1.5094766
Miles, K., McMahon, C., Boisvert, I., Ibrahim, R., de Lissa, P., Graham, P., & Lyxell, B. (2017). Objective assessment of listening effort: Coregistration of pupillometry and EEG. Trends in Hearing, 21, 233121651770639. https://doi.org/10.1177/2331216517706396
Näätänen, R. (1982). Processing negativity: An evoked-potential reflection. Psychological Bulletin, 92(3), 605-640. https://doi.org/10.1037/0033-2909.92.3.605
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
Nojszewska, M., Pilczuk, B., Zakrzewska-Pniewska, B., & Rowinska-Marcinska, K. (2009). The auditory system involvement in Parkinson disease: Electrophysiological and neuropsychological correlations. Journal of Clinical Neurophysiology, 26(6), 430-437. https://doi.org/10.1097/WNP.0b013e3181c2bcc8
Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: Fully automated statistical thresholding for EEG artifact rejection. Journal of Neuroscience Methods, 192(1), 152-162. https://doi.org/10.1016/j.jneumeth.2010.07.015
Obleser, J., Wöstmann, M., Hellbernd, N., Wilsch, A., & Maess, B. (2012). Adverse listening conditions and memory load drive a common alpha oscillatory network. Journal of Neuroscience, 32(36), 12376-12383. https://doi.org/10.1523/JNEUROSCI.4908-11.2012
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1-9. https://doi.org/10.1155/2011/156869
Paul, B. T., Chen, J., Le, T., Lin, V., & Dimitrijevic, A. (2021). Cortical alpha oscillations in cochlear implant users reflect subjective listening effort during speech-in-noise perception. PLoS ONE, 16(7), e0254162. https://doi.org/10.1371/journal.pone.0254162
Pauletti, C., Mannarelli, D., Locuratolo, N., Currà, A., Marinelli, L., & Fattapposta, F. (2019). Central fatigue and attentional processing in Parkinson's disease: An event-related potentials study. Clinical Neurophysiology, 130(5), 692-700. https://doi.org/10.1016/j.clinph.2019.01.017
Petersen, E. B., Wöstmann, M., Obleser, J., Stenfelt, S., & Lunner, T. (2015). Hearing loss impacts neural alpha oscillations under adverse listening conditions. Frontiers in Psychology, 6, 177. https://doi.org/10.3389/fpsyg.2015.00177
Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., Edwards, B., Hornsby, B. W., Humes, L. E., Lemke, U., Lunner, T., Matthen, M., Mackersie, C. L., Naylor, G., Phillips, N. A., Richter, M., Rudner, M., Sommers, M. S., Tremblay, K. L., & Wingfield, A. (2016). Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear and Hearing, 37, 5S-27S. https://doi.org/10.1097/AUD.0000000000000312
Pirtošek, Z., Jahanshahi, M., Barrett, G., & Lees, A. J. (2001). Attention and cognition in bradykinetic-rigid syndromes: An event-related potential study. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 50(5), 567-573. https://doi.org/10.1002/ana.1221
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177-182. https://doi.org/10.1111/j.1467-8721.2008.00570.x
Rogers, C. S., Payne, L., Maharjan, S., Wingfield, A., & Sekuler, R. (2018). Older adults show impaired modulation of attentional alpha oscillations: Evidence from dichotic listening. Psychology and Aging, 33(2), 246-258. https://doi.org/10.1037/pag0000238
Schneider, D., Herbst, S. K., Klatt, L. I., & Wöstmann, M. (2021). Target enhancement or distractor suppression? Functionally distinct alpha oscillations form the basis of attention. European Journal of Neuroscience. 1-10. https://doi.org/10.1111/ejn.15309
Seer, C., Lange, F., Georgiev, D., Jahanshahi, M., & Kopp, B. (2016). Event-related potentials and cognition in Parkinson's disease: An integrative review. Neuroscience & Biobehavioral Reviews, 71, 691-714. https://doi.org/10.1016/j.neubiorev.2016.08.003
Sharpe, M. H. (1992). Auditory attention in early Parkinson's disease: An impairment in focused attention. Neuropsychologia, 30(1), 101-106. https://doi.org/10.1016/0028-3932(92)90019-I
Shinn-Cunningham, B., Best, V., & Lee, A. K. (2017). Auditory object formation and selection. In The auditory system at the cocktail party (pp. 7-40). Springer. doi: 10.1007/978-3-319-51662-2_2
Smolnik, R., Fischer, S., Hagenah, J., Kis, B., Born, J., & Vieregge, P. (2002). Brain potential signs of slowed stimulus processing following cholecystokinin in Parkinson's disease. Psychopharmacology, 161(1), 70-76. https://doi.org/10.1007/s00213-002-1010-9
Solís-Vivanco, R., Ricardo-Garcell, J., Rodríguez-Camacho, M., Prado-Alcalá, R. A., Rodríguez, U., Rodríguez-Violante, M., & Rodríguez-Agudelo, Y. (2011). Involuntary attention impairment in early Parkinson's disease: An event-related potential study. Neuroscience Letters, 495(2), 144-149. https://doi.org/10.1016/j.neulet.2011.03.058
Solís-Vivanco, R., Rodríguez-Violante, M., Cervantes-Arriaga, A., Justo-Guillén, E., & Ricardo-Garcell, J. (2018). Brain oscillations reveal impaired novelty detection from early stages of Parkinson's disease. NeuroImage: Clinical, 18, 923-931. https://doi.org/10.1016/j.nicl.2018.03.024
Solís-Vivanco, R., Rodríguez-Violante, M., Rodríguez-Agudelo, Y., Schilmann, A., Rodríguez-Ortiz, U., & Ricardo-Garcell, J. (2015). The P3a wave: A reliable neurophysiological measure of Parkinson's disease duration and severity. Clinical Neurophysiology, 126(11), 2142-2149. https://doi.org/10.1016/j.clinph.2014.12.024
Stam, C. J., Visser, S. L., Op de Coul, A. A. W., De Sonneville, L. M. J., Schellens, R. L. L. A., Brunia, C. H. M., de Smet, J. S., & Gielen, G. (1993). Disturbed frontal regulation of attention in Parkinson's disease. Brain, 116(5), 1139-1158. https://doi.org/10.1093/brain/116.5.1139
Strauß, A., Wöstmann, M., & Obleser, J. (2014). Cortical alpha oscillations as a tool for auditory selective inhibition. Frontiers in Human Neuroscience, 8, 350. https://doi.org/10.3389/fnhum.2014.00350
Teo, C., Rasco, L., Al-Mefty, K., Skinner, R. D., Boop, F. A., & Garcia-Rill, E. (1997). Decreased habituation of midlatency auditory evoked responses in Parkinson's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 12(5), 655-664. https://doi.org/10.1002/mds.870120506
Teo, C., Rasco, L., Skinner, R. D., & Garcia-Rill, E. (1998). Disinhibition of the sleep state-dependent p1 potential in Parkinson's disease-improvement after pallidotomy. Sleep Research Online: SRO, 1(1), 62-70.
Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R., & Clarke, C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Movement Disorders, 25(15), 2649-2653. https://doi.org/10.1002/mds.23429
Tremblay, K. L., & Backer, K. C. (2016). Listening and learning: Cognitive contributions to the rehabilitation of older adults with and without audiometrically defined hearing loss. Ear and Hearing, 37(Suppl 1), 155S-162S. https://doi.org/10.1097/AUD.0000000000000307
Troche, J., Troche, M. S., Berkowitz, R., Grossman, M., & Reilly, J. (2012). Tone discrimination as a window into acoustic perceptual deficits in Parkinson's disease. American Journal of Speech-Language Pathology, 21, 258-263. https://doi.org/10.1044/1058-0360(2012/11-0007)
Tsuchiya, H., Yamaguchi, S., & Kobayashi, S. (2000). Impaired novelty detection and frontal lobe dysfunction in Parkinson's disease. Neuropsychologia, 38(5), 645-654. https://doi.org/10.1016/S0028-3932(99)00108-6
Tune, S., Wöstmann, M., & Obleser, J. (2018). Probing the limits of alpha power lateralisation as a neural marker of selective attention in middle-aged and older listeners. European Journal of Neuroscience, 48(7), 2537-2550. https://doi.org/10.1111/ejn.13862
Van Diepen, R. M., Foxe, J. J., & Mazaheri, A. (2019). The functional role of alpha-band activity in attentional processing: The current zeitgeist and future outlook. Current Opinion in Psychology, 29, 229-238. https://doi.org/10.1016/j.copsyc.2019.03.015
Van Strien, J. W. (1992). Classificatie van links-en rechtshandige proefpersonen. Nederlands Tijdschrift voor de Psychologie en haar Grensgebieden, 47, 88-92.
Venhovens, J., Meulstee, J., Bloem, B. R., & Verhagen, W. I. M. (2016). Neurovestibular analysis and falls in Parkinson's disease and atypical parkinsonism. European Journal of Neuroscience, 43(12), 1636-1646. https://doi.org/10.1111/ejn.13253
Vieregge, P., Verleger, R., Wascher, E., Stüven, F., & Kömpf, D. (1994). Auditory selective attention is impaired in Parkinson's disease-Event-related evidence from EEG potentials. Cognitive Brain Research, 2(2), 117-129. https://doi.org/10.1016/0926-6410(94)90008-6
Vikene, K., Skeie, G. O., & Specht, K. (2019). Compensatory task-specific hypersensitivity in bilateral planum temporale and right superior temporal gyrus during auditory rhythm and omission processing in Parkinson's disease. Scientific Reports, 9(1), 1-9. https://doi.org/10.1038/s41598-019-48791-0
Weber, J., Abeln, V., Steichele, K., Foitschik, T., & Stuckenschneider, T. (2021). Inefficient resource allocation is associated with reduced alpha activity in parietal regions in individuals with Parkinson's disease. European Journal of Neuroscience, 53(4), 1225-1237. https://doi.org/10.1111/ejn.15008
Weinstein, N. D. (1978). Individual differences in reactions to noise: A longitudinal study in a college dormitory. Journal of Applied Psychology, 63(4), 458-466. https://doi.org/10.1037/0021-9010.63.4.458
Weisz, N., Hartmann, T., Müller, N., & Obleser, J. (2011). Alpha rhythms in audition: Cognitive and clinical perspectives. Frontiers in Psychology, 2, 73. https://doi.org/10.3389/fpsyg.2011.00073
Whiteley, L., & Sahani, M. (2012). Attention in a Bayesian framework. Frontiers in Human Neuroscience, 6, 100. https://doi.org/10.3389/fnhum.2012.00100
Wilsch, A., Henry, M. J., Herrmann, B., Maess, B., & Obleser, J. (2015). Alpha oscillatory dynamics index temporal expectation benefits in working memory. Cerebral Cortex, 25(7), 1938-1946. https://doi.org/10.1093/cercor/bhu004
Wingfield, A., Tun, P. A., & McCoy, S. L. (2005). Hearing loss in older adulthood: What it is and how it interacts with cognitive performance. Current Directions in Psychological Science, 14(3), 144-148. https://doi.org/10.1111/j.0963-7214.2005.00356.x
Wisniewski, M. G., Thompson, E. R., & Iyer, N. (2017). Theta-and alpha-power enhancements in the electroencephalogram as an auditory delayed match-to-sample task becomes impossibly difficult. Psychophysiology, 54(12), 1916-1928. https://doi.org/10.1111/psyp.12968
Wong, P. C., Jin, J. X., Gunasekera, G. M., Abel, R., Lee, E. R., & Dhar, S. (2009). Aging and cortical mechanisms of speech perception in noise. Neuropsychologia, 47(3), 693-703. https://doi.org/10.1016/j.neuropsychologia.2008.11.032
Wöstmann, M., Alavash, M., & Obleser, J. (2019). Alpha oscillations in the human brain implement distractor suppression independent of target selection. Journal of Neuroscience, 39(49), 9797-9805. https://doi.org/10.1523/JNEUROSCI.1954-19.2019
Wöstmann, M., Fiedler, L., & Obleser, J. (2017). Tracking the signal, cracking the code: Speech and speech comprehension in non-invasive human electrophysiology. Language, Cognition and Neuroscience, 32(7), 855-869. https://doi.org/10.1080/23273798.2016.1262051
Wöstmann, M., Herrmann, B., Maess, B., & Obleser, J. (2016). Spatiotemporal dynamics of auditory attention synchronize with speech. Proceedings of the National Academy of Sciences, 113(14), 3873-3878. https://doi.org/10.1073/pnas.1523357113
Wöstmann, M., Herrmann, B., Wilsch, A., & Obleser, J. (2015). Neural alpha dynamics in younger and older listeners reflect acoustic challenges and predictive benefits. Journal of Neuroscience, 35(4), 1458-1467. https://doi.org/10.1523/JNEUROSCI.3250-14.2015
Wöstmann, M., Lim, S. J., & Obleser, J. (2017). The human neural alpha response to speech is a proxy of attentional control. Cerebral Cortex, 27(6), 3307-3317. https://doi.org/10.1093/cercor/bhx074
Wöstmann, M., Maess, B., & Obleser, J. (2021). Orienting auditory attention in time: Lateralized alpha power reflects spatio-temporal filtering. NeuroImage, 228, 117711. https://doi.org/10.1016/j.neuroimage.2020.117711
Wöstmann, M., Waschke, L., & Obleser, J. (2019). Prestimulus neural alpha power predicts confidence in discriminating identical auditory stimuli. European Journal of Neuroscience, 49(1), 94-105. https://doi.org/10.1111/ejn.14226
Zekveld, A. A., Heslenfeld, D. J., Festen, J. M., & Schoonhoven, R. (2006). Top-down and bottom-up processes in speech comprehension. NeuroImage, 32(4), 1826-1836. https://doi.org/10.1016/j.neuroimage.2006.04.199
Zhang, F., Eliassen, J., Anderson, J., Scheifele, P., & Brown, D. (2009). The time course of the amplitude and latency in the auditory late response evoked by repeated tone bursts. Journal of the American Academy of Audiology, 20(4), 239-250. https://doi.org/10.3766/jaaa.20.4.4