(+)-Catechin-assisted graphene production by sonochemical exfoliation in water. A new redox-active nanomaterial for electromediated sensing.

2D materials Chronoamperometry Cyclic voltammetry Functional nanomaterial Hydrazine Liquid-phase exfoliation Nicotinamide adenine dinucleotide Polyphenols

Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
07 10 2021
Historique:
received: 30 06 2021
accepted: 03 09 2021
entrez: 7 10 2021
pubmed: 8 10 2021
medline: 29 1 2022
Statut: epublish

Résumé

A new green and effective sonochemical liquid-phase exfoliation (LPE) is proposed wherein a flavonoid compound, catechin (CT), promotes the formation of conductive, redox-active, water-phase stable graphene nanoflakes (GF). To maximize the GF-CT redox activity, the CT concentration and sonication time have been studied, and the best performing nanomaterial-fraction selected. Physicochemical and electrochemical methods have been employed to characterize the morphological, structural, and electrochemical features of the GF-CT nanoflakes. The obtained GF intercalated with CT exhibits fully reversible electrochemistry (ΔE

Identifiants

pubmed: 34618244
doi: 10.1007/s00604-021-05018-2
pii: 10.1007/s00604-021-05018-2
doi:

Substances chimiques

graphene oxide 0
Graphite 7782-42-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

369

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Naghdi T, Faham S, Mahmoudi T et al (2020) Phytochemicals toward Green (Bio)sensing. ACS Sensors 5:3770–3805. https://doi.org/10.1021/acssensors.0c02101
doi: 10.1021/acssensors.0c02101 pubmed: 33301670
Scroccarello A, Della Pelle F, Neri L et al (2019) Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples. Food Res Int 119:359–368. https://doi.org/10.1016/j.foodres.2019.02.006
doi: 10.1016/j.foodres.2019.02.006 pubmed: 30884666
Scroccarello A, Molina-Hernández B, Della Pelle F et al (2021) Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger. Colloids Surf B Biointerfaces 199:111533. https://doi.org/10.1016/j.colsurfb.2020.111533
doi: 10.1016/j.colsurfb.2020.111533 pubmed: 33388719
Guo J, Suma T, Richardson JJ, Ejima H (2019) Modular assembly of biomaterials using polyphenols as building blocks. ACS Biomater Sci Eng 5:5578–5596. https://doi.org/10.1021/acsbiomaterials.8b01507
doi: 10.1021/acsbiomaterials.8b01507 pubmed: 33405688
Della Pelle F, Rojas D, Silveri F et al (2020) Class-selective voltammetric determination of hydroxycinnamic acids structural analogs by using a WS2/catechin-capped-AuNPs/carbon black based nanocomposite sensor. Microchim Acta 187:1–13. https://doi.org/10.1007/s00604-020-04281-z
doi: 10.1007/s00604-020-04281-z
Scroccarello A, Della Pelle F, Fratini E et al (2020) Colorimetric determination of polyphenols via gold nanoseeds decorated polydopamine film. Microchim Acta 187:1–10. https://doi.org/10.1007/s00604-020-04228-4
doi: 10.1007/s00604-020-04228-4
Rojas D, Pelle F, Carlo M et al (2020) Group VI transition metal dichalcogenides as antifouling transducers for electrochemical oxidation of catechol-containing structures. Electrochem Commun 115:106718. https://doi.org/10.1016/j.elecom.2020.106718
doi: 10.1016/j.elecom.2020.106718
Asif M, Liu H, Aziz A et al (2017) Core-shell iron oxide-layered double hydroxide: High electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359. https://doi.org/10.1016/j.bios.2017.05.057
doi: 10.1016/j.bios.2017.05.057 pubmed: 28624617
Asif M, Aziz A, Azeem M et al (2018) A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv Colloid Interface Sci 262:21–38. https://doi.org/10.1016/j.cis.2018.11.001
doi: 10.1016/j.cis.2018.11.001 pubmed: 30428998
Martín A, Escarpa A (2014) Graphene : The cutting – edge interaction between chemistry and electrochemistry. Trends Analyt Chem 56:13–26. https://doi.org/10.1016/j.trac.2013.12.008
doi: 10.1016/j.trac.2013.12.008
Backes C, Abdelkader AM, Alonso C et al (2020) Production and processing of graphene and related materials. 2D Mater 7:2. https://doi.org/10.1088/2053-1583/ab1e0a
Ciesielski A, Samorì P (2016) Supramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliation. Adv Mater 28:6030–6051. https://doi.org/10.1002/adma.201505371
doi: 10.1002/adma.201505371 pubmed: 26928750
Saiz-Poseu J, Mancebo-Aracil J, Nador F et al (2019) The chemistry behind catechol-based adhesion. Angew Chemie - Int Ed 58:696–714. https://doi.org/10.1002/anie.201801063
doi: 10.1002/anie.201801063
Zhao S, Xie S, Zhao Z et al (2018) Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water. ACS Sustain Chem Eng 6:7652–7661. https://doi.org/10.1021/acssuschemeng.8b00497
doi: 10.1021/acssuschemeng.8b00497
Yang S, Zhuo K, Sun D et al (2019) Preparation of graphene by exfoliating graphite in aqueous fulvic acid solution and its application in corrosion protection of aluminum. J Colloid Interface Sci 543:263–272. https://doi.org/10.1016/j.jcis.2019.02.068
doi: 10.1016/j.jcis.2019.02.068 pubmed: 30818142
Xu Y, Cao H, Xue Y et al (2018) Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials 8:942. https://doi.org/10.3390/nano8110942
doi: 10.3390/nano8110942 pmcid: 6265730
Liao R, Tang Z, Lei Y, Guo B (2011) Polyphenol-reduced graphene oxide : mechanism and derivatization. J Phys Chem 115:20740–20746. https://doi.org/10.1021/jp2068683
doi: 10.1021/jp2068683
Yu Z, Shi Z, Xu H et al (2017) Co-assembly of tannin-assisted exfoliated low-defect graphene and epoxy natural rubber latex to form soft and elastic nacre-like fi lm with good electrical conductivity. Carbon N Y 114:649–660. https://doi.org/10.1016/j.carbon.2016.12.049
doi: 10.1016/j.carbon.2016.12.049
Akkaya B, Çakiroğlu B, Mahmut Ö (2018) Tannic acid-reduced graphene oxide deposited with Pt nanoparticles for switchable bioelectronics and biosensors based on direct electrochemistry. ACS Sustain Chem Eng 6:3805–3814. https://doi.org/10.1021/acssuschemeng.7b04164
doi: 10.1021/acssuschemeng.7b04164
Manchala S, Tandava VSRK, Jampaiah D et al (2019) Novel and highly efficient strategy for the green synthesis of soluble graphene by aqueous polyphenol extracts of eucalyptus bark and its applications in high-performance supercapacitors. ACS Sustain Chem Eng 7:11612–11620. https://doi.org/10.1021/acssuschemeng.9b01506
doi: 10.1021/acssuschemeng.9b01506
Oliveira-brett AM, Enache TA, Gil EDS (2020) Natural phenolic antioxidants electrochemistry : towards a new. Compr Rev Food Sci Food Saf 19:1680–1726. https://doi.org/10.1111/1541-4337.12566
doi: 10.1111/1541-4337.12566 pubmed: 33337087
Rojas D, Della Pelle F, Del Carlo M et al (2019) Nanohybrid carbon black-molybdenum disulfide transducers for preconcentration-free voltammetric detection of the olive oil o-diphenols hydroxytyrosol and oleuropein. Microchim Acta 186:363. https://doi.org/10.1007/s00604-019-3418-5
doi: 10.1007/s00604-019-3418-5
Hernández-Rodríguez JF, Della Pelle F, Rojas D et al (2020) Xurography-enabled thermally transferred carbon nanomaterial-based electrochemical sensors on polyethylene terephthalate-ethylene vinyl acetate films. Anal Chem 92:13565–13572. https://doi.org/10.1021/acs.analchem.0c03240
doi: 10.1021/acs.analchem.0c03240 pubmed: 32869640
da Silva LV, Goulart MOF, Lopes CB et al (2018) Phenol based redox mediators in electroanalysis. J Electroanal Chem 827:230–252. https://doi.org/10.1016/j.jelechem.2018.05.027
doi: 10.1016/j.jelechem.2018.05.027
Della Pelle F, Blandón-Naranjo L, Alzate M et al (2020) Cocoa powder and catechins as natural mediators to modify carbon-black based screen-printed electrodes. Application to free and total glutathione detection in blood. Talanta 207:120349. https://doi.org/10.1016/j.talanta.2019.120349
doi: 10.1016/j.talanta.2019.120349 pubmed: 31594572
Shi R, Han C, Duan H et al (2018) Redox-active organic sodium anthraquinone-2-sulfonate ( AQS ) anchored on reduced graphene oxide for. Adv Energy Mater 1802088:1–9. https://doi.org/10.1002/aenm.201802088
doi: 10.1002/aenm.201802088
Kim U, Cho Y, Jeon D et al (2020) Zwitterionic conjugated surfactant functionalization of graphene with pH-independent dispersibility : an efficient electron mediator for the oxygen evolution reaction in acidic media. Small 16:1906635. https://doi.org/10.1002/smll.201906635
doi: 10.1002/smll.201906635
Gan D, Huang Z, Wang X et al (2020) Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv Funct Mater 30:1907678. https://doi.org/10.1002/adfm.201907678
doi: 10.1002/adfm.201907678
Sato-Berrú RY, Mejía-Uriarte EV, Frausto-Reyes C et al (2007) Application of principal component analysis and Raman spectroscopy in the analysis of polycrystalline BaTiO3 at high pressure. Spectrochim Acta - Part A Mol Biomol Spectrosc 66:557–560. https://doi.org/10.1016/j.saa.2006.03.032
doi: 10.1016/j.saa.2006.03.032
Backes C, Paton KR, Hanlon D et al (2016) Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8:4311–4323. https://doi.org/10.1039/c5nr08047a
doi: 10.1039/c5nr08047a pubmed: 26838813
Backes C, Higgins TM, Kelly A et al (2017) Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255. https://doi.org/10.1021/acs.chemmater.6b03335
doi: 10.1021/acs.chemmater.6b03335
Bark KM, Yeom JE, Yang JI et al (2011) Spectroscopic studies on the oxidation of catechin in aqueous solution. Bull Korean Chem Soc 32:3443–3447. https://doi.org/10.5012/bkcs.2011.32.9.3443
doi: 10.5012/bkcs.2011.32.9.3443
Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3:1127–1133
doi: 10.1021/am1012613
Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052
doi: 10.1016/j.ssc.2007.03.052
Khan U, O’Neill A, Porwal H et al (2012) Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon N Y 50:470–475. https://doi.org/10.1016/j.carbon.2011.09.001
doi: 10.1016/j.carbon.2011.09.001
Della Pelle F, Rojas D, Scroccarello A et al (2019) High-performance carbon black/molybdenum disulfide nanohybrid sensor for cocoa catechins determination using an extraction-free approach. Sensors Actuators B Chem 296:126651. https://doi.org/10.1016/j.snb.2019.126651
doi: 10.1016/j.snb.2019.126651
Rojas D, Hernández-Rodríguez JF, Della Pelle F et al (2020) Oxidative stress on-chip: Prussian blue-based electrode array for in situ detection of H2O2 from cell populations. Biosens Bioelectron 170:112669. https://doi.org/10.1016/j.bios.2020.112669
doi: 10.1016/j.bios.2020.112669 pubmed: 33035897
Sharp M, Petersson M, Edstrom K (1979) Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J Electroanal Chem Interf Electrochem 95:123–130. https://doi.org/10.1016/S0022-0728(79)80227-2
doi: 10.1016/S0022-0728(79)80227-2
Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3
doi: 10.1016/S0022-0728(79)80075-3
Kumar AS, Shanmugam R, Vishnu N et al (2016) Electrochemical immobilization of ellagic acid phytochemical on MWCNT modified glassy carbon electrode surface and its efficient hydrazine electrocatalytic activity in neutral pH. J Electroanal Chem 782:215–224. https://doi.org/10.1016/j.jelechem.2016.10.010
doi: 10.1016/j.jelechem.2016.10.010
Blandón-Naranjo L, Della Pelle F, Vázquez MV et al (2018) Electrochemical behaviour of microwave-assisted oxidized MWCNTs based disposable electrodes: proposal of a NADH electrochemical sensor. Electroanalysis 30:509–516. https://doi.org/10.1002/elan.201700674
doi: 10.1002/elan.201700674
Vulcano F, Kovtun A, Bettini C et al (2020) Dopamine-functionalized graphene oxide as a high-performance material for biosensing. 2D Mater 7:024007. https://doi.org/10.1088/2053-1583/ab734f/meta
doi: 10.1088/2053-1583/ab734f/meta
Zanardi C, Ferrari E, Pigani L et al (2015) Development of an electrochemical sensor for NADH determination based on a caffeic acid redox mediator supported on carbon black. Chemosensors 3:118–128. https://doi.org/10.3390/chemosensors3020118
doi: 10.3390/chemosensors3020118
Zhu J, Chauhan DS, Shan D et al (2014) Ultrasensitive determination of hydrazine using a glassy carbon electrode modified with pyrocatechol violet electrodeposited on single walled carbon nanotubes. Microchim Acta 181:813–820. https://doi.org/10.1007/s00604-014-1168-y
doi: 10.1007/s00604-014-1168-y
Roushani M, Karami M, Zare Dizajdizi B (2017) Amperometric NADH sensor based on a carbon ceramic electrode modified with the natural carotenoid crocin and multi-walled carbon nanotubes. Microchim Acta 184:473–481. https://doi.org/10.1007/s00604-016-2034-x
doi: 10.1007/s00604-016-2034-x
Bilgi M, Sahin EM, Ayranci E (2018) Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. J Electroanal Chem 813:67–74. https://doi.org/10.1016/j.jelechem.2018.02.012
doi: 10.1016/j.jelechem.2018.02.012
Gandhi M, Rajagopal D, Senthil Kumar A (2020) Facile electrochemical demethylation of 2-methoxyphenol to surface-confined catechol on the MWCNT and its efficient electrocatalytic hydrazine oxidation and sensing applications. ACS Omega 5:16208–16219
doi: 10.1021/acsomega.0c01846

Auteurs

Filippo Silveri (F)

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.

Flavio Della Pelle (F)

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy. fdellapelle@unite.it.

Daniel Rojas (D)

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.

Qurat Ul Ain Bukhari (QUA)

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.

Giovanni Ferraro (G)

Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3-Sesto Fiorentino, 50019, Florence, Italy.

Emiliano Fratini (E)

Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3-Sesto Fiorentino, 50019, Florence, Italy.

Dario Compagnone (D)

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy. dcompagnone@unite.it.

Articles similaires

Colorimetry Hydrogen Peroxide Nanostructures Limit of Detection Benzidines

Bifunctional SnO

Bairui Tao, Jiaxin Guo, Fengjuan Miao
1.00
Triticum Nanocomposites Electrodes Tin Compounds Hydrogen
Graphite Biosensing Techniques Hypercholesterolemia Humans Phosphorus
Animals Mice Spheroids, Cellular Mice, Inbred C57BL Insulin

Classifications MeSH