Biology and Current Treatment of Myeloproliferative Neoplasms.
Essential thrombocythemia
JAK2
Myelofibrosis
Myeloproliferative neoplasm
Polycythemia rubra vera
Journal
Cancer treatment and research
ISSN: 0927-3042
Titre abrégé: Cancer Treat Res
Pays: United States
ID NLM: 8008541
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
9
10
2021
pubmed:
10
10
2021
medline:
26
11
2021
Statut:
ppublish
Résumé
The classical myeloproliferative neoplasms (MPN) are characterized by clonal expansion of one or more hematopoietic cell lineages and are driven by mutations that activate constitutive signaling via JAK2 pathway. The criteria for diagnosis have now been defined by the World Health Organization (WHO) and the term MPN as is currently used encompasses the entities of primary myelofibrosis, polycythemia vera, and essential thrombocytosis. There is imperfect correlation between the genotype and disease phenotype in MPN and the latter is determined by a variety of patient factors that are independent of the driver mutation. The disease course in MPN can span decades and accurate risk assessment is critical in the choice of therapy and treatment is largely geared toward prevention of complications and providing symptomatic relief. Although new agents have been approved in recent years, no therapy has been convincingly shown to alter disease progression and allogeneic hematopoietic stem cell transplantation (HCT) remains the only curative therapy known to date.
Identifiants
pubmed: 34626360
doi: 10.1007/978-3-030-78311-2_9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
151-165Informations de copyright
© 2021. Springer Nature Switzerland AG.
Références
Dameshek W (1951) Some speculations on the myeloproliferative syndromes. Blood 6(4):372–375
doi: 10.1182/blood.V6.4.372.372
Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. J Blood 127(20):2391–2405. https://doi.org/10.1182/blood-2016-03-643544
Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders 352(17):1779–1790. https://doi.org/10.1056/NEJMoa051113
Klampfl T, Gisslinger H, Harutyunyan AS et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369(25):2379–2390. https://doi.org/10.1056/NEJMoa1311347
Nangalia J, Massie CE, Baxter EJ et al (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369(25):2391–2405. https://doi.org/10.1056/NEJMoa1312542
Pikman Y, Lee BH, Mercher T et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLOS Med 3(7):e270. https://doi.org/10.1371/journal.pmed.0030270
Szuber N, Tefferi A (2018) Driver mutations in primary myelofibrosis and their implications. Curr Opin Hematol 25(2):129–135. https://doi.org/10.1097/moh.0000000000000406
Spivak JL (2017) Myeloproliferative neoplasms. N Engl J Med 376:2168–2181
doi: 10.1056/NEJMra1406186
Defour JP, Chachoua I, Pecquet C, Constantinescu SN (2015) Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms. Leukemia 30:1214. https://doi.org/10.1038/leu.2015.271
Rampal R, Ahn J, Abdel-Wahab O et al (2014) Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci 111(50):E5401–E10. https://doi.org/10.1073/pnas.1407792111
Stegelmann F, Bullinger L, Griesshammer M et al (2010) High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations. Haematologica 95(4):666–669. https://doi.org/10.3324/haematol.2009.013623
Guglielmelli P, Lasho TL, Rotunno G et al (2014) The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 28:1804. https://doi.org/10.1038/leu.2014.76
Tefferi A, Finke CM, Lasho TL et al (2018) U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions. Leukemia 32(10):2274–2278. https://doi.org/10.1038/s41375-018-0078-0
Jones AV, Chase A, Silver RT et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449
doi: 10.1038/ng.334
Hinds DA, Barnholt KE, Mesa RA et al (2016) Germline variants predispose to both JAK2V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 128:1121–1128
doi: 10.1182/blood-2015-06-652941
Oddsson A, Kristinsson SY, Helgason H et al (2014) The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia 28:1371–1374
doi: 10.1038/leu.2014.48
Ding J, Komatsu H, Wakita A et al (2004) Familial essential thrombocythemia associated with a dominant positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 103:4198–4200
doi: 10.1182/blood-2003-10-3471
Passamonti F, Cervantes F, Vannucchi AM et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplsams Research and Treatment) Blood 115:1703–1708
Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count and transfusion status. J Clin Oncol 29:392–397
doi: 10.1200/JCO.2010.32.2446
Tefferi A, Guglielmelli P, Lasho TL et al (2018) MIPSS70+ Version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol 36(17):1769–1770. https://doi.org/10.1200/jco.2018.78.9867
Passamonti F, Giorgino T, Mora B et al (2017) A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 31:2726–2731
doi: 10.1038/leu.2017.169
Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A (2011) Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol: Official J Am Soc Clin Oncol 29(10):1356–1363. https://doi.org/10.1200/jco.2010.32.9490
Mesa RA, Schwager S, Radia D et al (2009) The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 33(9):1199–1203. https://doi.org/10.1016/j.leukres.2009.01.035
Harrison C, Kiladjian J-J, Al-Ali HK et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis 366(9):787–798. https://doi.org/10.1056/NEJMoa1110556
Verstovsek S, Mesa RA, Gotlib J et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis 366(9):799–807. https://doi.org/10.1056/NEJMoa1110557
Talpaz M, Kiladjian J-J (2020) Fedratinib, a newly approved treatmentfor patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia. https://doi.org/10.1038/s41375-020-0954-2
Ali H, Aldoss I, Yang D et al (2019) MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen J Blood Adv 3(1):83–95. https://doi.org/10.1182/bloodadvances.2018026658
Gupta V, Malone AK, Hari PN et al (2014) Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant 20(1):89–97. https://doi.org/10.1016/j.bbmt.2013.10.018
Hultcrantz M et al (2012) Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973–2008: a population based study. J Clin Oncol 30:2995–3001
doi: 10.1200/JCO.2012.42.1925
Marchioli R, Finazzi G, Landolfi R et al (2005) Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol 23(10):2224–2232. https://doi.org/10.1200/jco.2005.07.062
Tefferi A, Vannucchi AM, Barbui T (2018) Polycythemia vera treatment algorithm 2018. Blood Cancer J 8:3
doi: 10.1038/s41408-017-0042-7
Tang G et al (2017) Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica 102:1511–1518
doi: 10.3324/haematol.2017.165795
Tefferi A et al (2016) Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv 1:21–30
doi: 10.1182/bloodadvances.2016000216
Marchioli R, Finazzi G, Specchia G et al (2012) Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 368(1):22–33. https://doi.org/10.1056/NEJMoa1208500
Landolfi R, Marchioli R, Kutti J et al (2004) Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 350(2):114–124. https://doi.org/10.1056/NEJMoa035572
Vannucchi AM et al (2015) Ruxolitinib versus standard therapy for treatment of polycythemia vera. N Engl J Med 372:426–435
doi: 10.1056/NEJMoa1409002
Teferri A, Pardanani A (2019) Essential thrombocythemia. N Engl J Med 381:2135–2144
doi: 10.1056/NEJMcp1816082
Passamonti F, Thiele J, Girodon F et al (2012) A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on myelofibrosis research and treatment. Blood 120:1197–1201
Rumi E, Pietra D, Ferretti V et al (2014) JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 123:1544–1551
doi: 10.1182/blood-2013-11-539098
Barbui T, Finazzi G, Carobbio A et al (2012) Development and validation of an international prognostic score of thrombpsis in world health organization-essential thrombocythemia (IPSET-thrombosis). Blood 120:5128–5133
doi: 10.1182/blood-2012-07-444067
Cortelazzo S, Finazzi G, Ruggeri M et al (1995) Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 332:1132–1136
doi: 10.1056/NEJM199504273321704
Harrison CN, Mead AJ, Panchal A et al (2017) Ruxolitinib versus best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood 130:1889–1897
doi: 10.1182/blood-2017-05-785790