Cardiac Kinetic Energy and Viscous Dissipation Rate From Radial Flow Data.
blood flow
color Doppler echocardiography
hemodynamics
kinetic energy
ultrasonography
viscous dissipation rate
Journal
Frontiers in physiology
ISSN: 1664-042X
Titre abrégé: Front Physiol
Pays: Switzerland
ID NLM: 101549006
Informations de publication
Date de publication:
2021
2021
Historique:
received:
14
06
2021
accepted:
18
08
2021
entrez:
11
10
2021
pubmed:
12
10
2021
medline:
12
10
2021
Statut:
epublish
Résumé
Recent studies have correlated kinetic energy (KE) and viscous dissipation rate (VDR) in the left ventricle (LV) with heart health. These studies have relied on 4D-flow imaging or computational fluid dynamics modeling, which are able to measure, or compute, all 3 components (3C) of the blood flow velocity in 3 dimensional (3D) space. This richness of data is difficult to acquire clinically. Alternatively, color Doppler echocardiography (CDE) is more widespread clinically, but only measures a single radial component of velocity and typically only over a planar section. Because of this limitation, prior CDE-based studies have first reconstructed a second component of velocity in the measurement plane prior to evaluating VDR or KE. Herein, we propose 1C-based surrogates of KE and VDR that can be derived directly from the radial component of the flow velocity in the LV. Our results demonstrate that the proposed 1C-based surrogates of KE and VDR are generally as well-correlated with the true KE and VDR values as surrogates that use reconstructed 2C flow data. Moreover, the correlation of these 1C-based surrogates with the true values indicate that CDE (3D in particular) may be useful in evaluating these metrics in practice.
Identifiants
pubmed: 34630145
doi: 10.3389/fphys.2021.725104
pmc: PMC8493223
doi:
Types de publication
Journal Article
Langues
eng
Pagination
725104Informations de copyright
Copyright © 2021 Frank, Lee, Lantz, Ebbers and Shadden.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Magn Reson Med. 2017 Feb;77(2):794-805
pubmed: 26924448
Pediatr Cardiol. 2017 Apr;38(4):669-680
pubmed: 28184976
J Thorac Cardiovasc Surg. 2015 May;149(5):1339-47
pubmed: 25623907
J Biomech. 2018 Sep 10;78:155-160
pubmed: 30049450
Circ J. 2018 Dec 25;83(1):130-138
pubmed: 30473569
J Cardiol. 2015 Nov;66(5):403-10
pubmed: 25595559
Comput Math Methods Med. 2015;2015:108274
pubmed: 26078773
Phys Rev Lett. 2005 Sep 2;95(10):108101
pubmed: 16196972
Am J Physiol Heart Circ Physiol. 2016 Mar 15;310(6):H747-55
pubmed: 26747496
Eur Heart J Cardiovasc Imaging. 2019 Jan 1;20(1):108-117
pubmed: 30137274
J Biomech. 2015 Sep 18;48(12):2984-9
pubmed: 26298492
IEEE Trans Med Imaging. 2010 Oct;29(10):1701-13
pubmed: 20562044
Int J Cardiovasc Imaging. 2018 Jun;34(6):905-920
pubmed: 29305740
Eur Heart J Cardiovasc Imaging. 2019 Mar 1;20(3):323-333
pubmed: 30060051
J Cardiovasc Magn Reson. 2018 Aug 30;20(1):61
pubmed: 30165869
BMC Cardiovasc Disord. 2017 Jun 30;17(1):172
pubmed: 28666420
Eur Heart J Cardiovasc Imaging. 2015 Jul;16(7):723-30
pubmed: 25762562
Ann Biomed Eng. 2013 Dec;41(12):2603-16
pubmed: 23817765
Int J Cardiovasc Imaging. 2017 Aug;33(8):1151-1158
pubmed: 28299608
Radiology. 2018 Oct;289(1):51-58
pubmed: 29944089
J Cardiovasc Magn Reson. 2015 Dec 20;17:111
pubmed: 26685664
Meccanica. 2017 Feb;52(3):563-576
pubmed: 31080296