AT-rich interaction domain 5A regulates the transcription of interleukin-6 gene in prostate cancer cells.


Journal

The Prostate
ISSN: 1097-0045
Titre abrégé: Prostate
Pays: United States
ID NLM: 8101368

Informations de publication

Date de publication:
01 2022
Historique:
revised: 24 09 2021
received: 01 07 2021
accepted: 29 09 2021
pubmed: 12 10 2021
medline: 23 2 2022
entrez: 11 10 2021
Statut: ppublish

Résumé

Interleukin-6 (IL-6) is a pleiotropic cytokine that confers androgen-independence and aggressiveness in prostate cancer (PCa); however, the molecular mechanisms regulating IL-6 expression remain unclear. The expression of ARID5A, an AT-rich interaction domain (ARID) DNA-binding motif-containing transcription factor is positively correlated with IL-6 expression in human PCa. We, therefore, hypothesized that ARID5A could regulate IL-6 expression in PCa. The relationship between ARID5A and IL-6 in PCa patients was analyzed using statistical analyses of multiple clinical microarray data sets. To investigate whether ARID5A regulates IL-6 expression, CRISPR-driven ARID5A knockout clones were established in DU145 and PC-3 cells. Analysis of three microarray data sets showed a positive correlation between ARID5A and IL-6 expression. The expression of IL-6 in ARID5A knockout clones was significantly reduced compared with control clones in both PCa cell lines. Knockout of ARID5A did not result in any loss of IL-6 mRNA stability. Instead, we observed a significant decrease in the occupancy of both active RNA Polymerase II and the active histone mark, H3K4me3 at the IL-6 transcriptional start site in ARID5A knockout PCa cells, suggesting a role for transcriptional regulation. Our study demonstrated that loss of ARID5A downregulates the expression of IL-6 at the transcriptional level.

Sections du résumé

BACKGROUND
Interleukin-6 (IL-6) is a pleiotropic cytokine that confers androgen-independence and aggressiveness in prostate cancer (PCa); however, the molecular mechanisms regulating IL-6 expression remain unclear. The expression of ARID5A, an AT-rich interaction domain (ARID) DNA-binding motif-containing transcription factor is positively correlated with IL-6 expression in human PCa. We, therefore, hypothesized that ARID5A could regulate IL-6 expression in PCa.
METHODS
The relationship between ARID5A and IL-6 in PCa patients was analyzed using statistical analyses of multiple clinical microarray data sets. To investigate whether ARID5A regulates IL-6 expression, CRISPR-driven ARID5A knockout clones were established in DU145 and PC-3 cells.
RESULTS
Analysis of three microarray data sets showed a positive correlation between ARID5A and IL-6 expression. The expression of IL-6 in ARID5A knockout clones was significantly reduced compared with control clones in both PCa cell lines. Knockout of ARID5A did not result in any loss of IL-6 mRNA stability. Instead, we observed a significant decrease in the occupancy of both active RNA Polymerase II and the active histone mark, H3K4me3 at the IL-6 transcriptional start site in ARID5A knockout PCa cells, suggesting a role for transcriptional regulation.
CONCLUSIONS
Our study demonstrated that loss of ARID5A downregulates the expression of IL-6 at the transcriptional level.

Identifiants

pubmed: 34633095
doi: 10.1002/pros.24251
pmc: PMC8665135
mid: NIHMS1745597
doi:

Substances chimiques

ARID5A protein, human 0
DNA-Binding Proteins 0
Interleukin-6 0
Transcription Factors 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

97-106

Subventions

Organisme : NCI NIH HHS
ID : P30 CA033572
Pays : United States

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Cancer Res. 1997 Jan 1;57(1):141-6
pubmed: 8988055
Nature. 2015 Jan 29;517(7536):583-8
pubmed: 25494202
J Steroid Biochem Mol Biol. 2017 Feb;166:16-27
pubmed: 27481707
Nat Methods. 2016 Oct;13(10):823-7
pubmed: 27595404
Anticancer Res. 2010 Oct;30(10):4369-72
pubmed: 21036766
Mol Cell Endocrinol. 2018 Feb 15;462(Pt A):3-8
pubmed: 28189566
Mol Cancer Ther. 2018 Dec;17(12):2722-2731
pubmed: 30254184
Cancer Res. 2011 Oct 15;71(20):6503-13
pubmed: 21868758
Urology. 2001 Dec;58(6):1008-15
pubmed: 11744478
Clin Cancer Res. 2003 Jan;9(1):370-6
pubmed: 12538490
Endocr Relat Cancer. 2010 Oct 05;17(4):885-95
pubmed: 20688881
PLoS One. 2014 Apr 23;9(4):e95051
pubmed: 24759736
Arch Esp Urol. 2009 Jun;62(5):359-66
pubmed: 19721171
PLoS One. 2011;6(11):e27970
pubmed: 22114732
Nucleic Acids Res. 1996 May 1;24(9):1695-701
pubmed: 8649988
Urology. 1995 Mar;45(3):542-9
pubmed: 7879350
Sci Rep. 2017 Mar 06;7:43592
pubmed: 28262826
Nat Rev Mol Cell Biol. 2014 Nov;15(11):749-60
pubmed: 25269475
J Mol Endocrinol. 2011 Jul 12;47(1):R25-41
pubmed: 21504942
Nat Struct Biol. 1998 Nov;5(11):959-64
pubmed: 9808040
Cancer Res. 2009 Mar 15;69(6):2305-13
pubmed: 19244107
Prostate. 2018 Dec;78(16):1238-1247
pubmed: 30027545
CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90
pubmed: 21296855
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15710-5
pubmed: 24019458
Cancer Lett. 2016 May 28;375(1):51-61
pubmed: 26945971
Mol Biotechnol. 2015 Feb;57(2):195-200
pubmed: 25370825
Clin Cancer Res. 2005 Mar 1;11(5):1815-20
pubmed: 15756004
Mol Cancer Ther. 2014 May;13(5):1246-58
pubmed: 24577942
Hum Pathol. 2003 Jul;34(7):646-53
pubmed: 12874759
J Vis Exp. 2019 May 10;(147):
pubmed: 31132037
Oncogene. 2006 Jun 8;25(24):3436-44
pubmed: 16474850
Sci Adv. 2020 Jun 05;6(23):eaaz6105
pubmed: 32548260
Bone Marrow Transplant. 2013 Mar;48(3):452-8
pubmed: 23208313
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9409-14
pubmed: 23676272
J Clin Oncol. 2005 Nov 10;23(32):8253-61
pubmed: 16278481
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15128-15133
pubmed: 31289228
Nat Commun. 2015 Jan 23;6:6061
pubmed: 25616107
J Pathol. 2004 Jan;202(1):41-9
pubmed: 14694520
Tumour Biol. 2016 Sep;37(9):11553-11572
pubmed: 27260630
Br J Cancer. 2004 Jun 14;90(12):2312-6
pubmed: 15150588
Cancer Detect Prev. 2008;32(1):23-32
pubmed: 18400418
Nucleic Acids Res. 2020 Apr 17;48(7):3869-3887
pubmed: 32016422
Oncogene. 2014 Jun 12;33(24):3140-50
pubmed: 23851510
J Cell Physiol. 2018 Oct;233(10):7148-7164
pubmed: 29693262
BJU Int. 2014 Jun;113(6):986-92
pubmed: 24053309

Auteurs

Wataru Ikeuchi (W)

Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.

Yuriko Wakita (Y)

Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.

Guoxiang Zhang (G)

Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.

Chun Li (C)

Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.

Keiichi Itakura (K)

Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.

Takahiro Yamakawa (T)

Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH