Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation.


Journal

Kidney international
ISSN: 1523-1755
Titre abrégé: Kidney Int
Pays: United States
ID NLM: 0323470

Informations de publication

Date de publication:
12 2021
Historique:
received: 24 06 2021
revised: 06 08 2021
accepted: 20 08 2021
pubmed: 12 10 2021
medline: 15 12 2021
entrez: 11 10 2021
Statut: ppublish

Résumé

Loss of fatty acid β-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.

Identifiants

pubmed: 34634362
pii: S0085-2538(21)00921-2
doi: 10.1016/j.kint.2021.08.031
pmc: PMC8608748
mid: NIHMS1748319
pii:
doi:

Substances chimiques

Fatty Acids 0
Klf15 protein, mouse 0
Kruppel-Like Transcription Factors 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1250-1267

Subventions

Organisme : BLRD VA
ID : I01 BX005300
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK112984
Pays : United States
Organisme : NIDDK NIH HHS
ID : K08 DK113223
Pays : United States
Organisme : NIDDK NIH HHS
ID : T32 DK007757
Pays : United States
Organisme : BLRD VA
ID : I01 BX003698
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK121846
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright © 2021 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

Références

Kidney Int. 2017 Nov;92(5):1178-1193
pubmed: 28651950
Kidney Int. 2018 Mar;93(3):568-579
pubmed: 29361307
Nat Commun. 2019 Apr 11;10(1):1684
pubmed: 30975991
BMC Bioinformatics. 2013 Apr 15;14:128
pubmed: 23586463
J Clin Invest. 2013 Oct;123(10):4232-41
pubmed: 23999430
J Am Soc Nephrol. 2017 Jan;28(1):166-184
pubmed: 27288011
J Am Soc Nephrol. 2018 Apr;29(4):1238-1256
pubmed: 29440280
J Biol Chem. 2014 Feb 28;289(9):5914-24
pubmed: 24407292
BMC Bioinformatics. 2014 Mar 21;15:79
pubmed: 24650281
Nat Commun. 2017 Nov 24;8(1):1769
pubmed: 29176561
J Vis Exp. 2013 Aug 09;(78):
pubmed: 23963468
Biol Open. 2019 May 20;8(5):
pubmed: 31064740
Cell Res. 2008 Dec;18(12):1177-89
pubmed: 19030024
Bioinformatics. 2010 Oct 1;26(19):2438-44
pubmed: 20709693
J Biol Chem. 2012 Jun 1;287(23):19122-35
pubmed: 22493483
Nat Med. 2015 Jan;21(1):37-46
pubmed: 25419705
Nat Genet. 2007 Aug;39(8):1018-24
pubmed: 17618285
J Am Soc Nephrol. 2014 Oct;25(10):2187-200
pubmed: 24744439
J Am Soc Nephrol. 2018 Oct;29(10):2529-2545
pubmed: 30143559
JCI Insight. 2018 Jul 26;3(14):
pubmed: 30046000
EMBO J. 2011 Apr 20;30(8):1459-72
pubmed: 21427703
JACC Basic Transl Sci. 2018 Feb;3(1):132-156
pubmed: 29876529
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8241-6
pubmed: 22493262
Nephron Extra. 2013 Jan 11;3(1):12-29
pubmed: 23610565
J Clin Invest. 2002 Feb;109(4):451-5
pubmed: 11854316
Nucleic Acids Res. 2003 Jan 1;31(1):374-8
pubmed: 12520026
Cell Death Dis. 2020 Jan 13;11(1):26
pubmed: 31932578
Kidney Int. 2011 May;79(9):987-96
pubmed: 21248717
Nucleic Acids Res. 2001 May 1;29(9):e45
pubmed: 11328886
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15874-15883
pubmed: 32571916
Cell Syst. 2018 Nov 28;7(5):556-561.e3
pubmed: 30447998
Development. 2017 Mar 1;144(5):737-754
pubmed: 28246209
Cell Rep. 2019 Apr 30;27(5):1551-1566.e5
pubmed: 31042480
PPAR Res. 2015;2015:201625
pubmed: 25815008
JCI Insight. 2017 Nov 16;2(22):
pubmed: 29202460
JCI Insight. 2017 Sep 21;2(18):
pubmed: 28931758
Sci Transl Med. 2012 Feb 15;4(121):121ra18
pubmed: 22344686
Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7
pubmed: 27141961
Nat Med. 2010 May;16(5):535-43, 1p following 143
pubmed: 20436483
J Pharmacol Exp Ther. 2011 Aug;338(2):588-97
pubmed: 21546538
J Am Soc Nephrol. 2019 Jan;30(1):23-32
pubmed: 30510133
Sci Transl Med. 2015 Dec 02;7(316):316ra193
pubmed: 26631632
Cell Metab. 2021 Feb 2;33(2):379-394.e8
pubmed: 33301705
Kidney Blood Press Res. 2013;37(6):631-40
pubmed: 24356553
PPAR Res. 2016;2016:6042162
pubmed: 27148361
Cancer Res. 2006 Mar 1;66(5):2576-83
pubmed: 16510575
J Clin Invest. 2021 Mar 1;131(5):
pubmed: 33465052
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1365-75
pubmed: 18715936
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23):
pubmed: 34074766
J Am Soc Nephrol. 2017 Aug;28(8):2322-2336
pubmed: 28336721

Auteurs

Sian E Piret (SE)

Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.

Ahmed A Attallah (AA)

Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.

Xiangchen Gu (X)

Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China.

Yiqing Guo (Y)

Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.

Nehaben A Gujarati (NA)

Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.

Justina Henein (J)

Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.

Amy Zollman (A)

Department of Medicine, Indiana University, Indianapolis, Indiana, USA.

Takashi Hato (T)

Department of Medicine, Indiana University, Indianapolis, Indiana, USA.

Avi Ma'ayan (A)

Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Monica P Revelo (MP)

Department of Pathology, University of Utah, Salt Lake City, Utah, USA.

Kathleen G Dickman (KG)

Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA.

Chung-Hsin Chen (CH)

Department of Urology, National Taiwan University Hospital, Taipei, Taiwan.

Chia-Tung Shun (CT)

Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan.

Thomas A Rosenquist (TA)

Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA.

John C He (JC)

Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Sandeep K Mallipattu (SK)

Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Renal Division, Northport VA Medical Center, Northport, New York, USA. Electronic address: sandeep.mallipattu@stonybrookmedicine.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH