COVID-19: Impact on linguistic and genetic isolates of India.
Journal
Genes and immunity
ISSN: 1476-5470
Titre abrégé: Genes Immun
Pays: England
ID NLM: 100953417
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
received:
15
02
2021
accepted:
28
09
2021
revised:
21
09
2021
pubmed:
13
10
2021
medline:
1
3
2022
entrez:
12
10
2021
Statut:
ppublish
Résumé
The rapid expansion of coronavirus SARS-CoV-2 has impacted various ethnic groups all over the world. The burden of infectious diseases including COVID-19 are generally reported to be higher for the Indigenous people. The historical knowledge have also suggested that the indigenous populations suffer more than the general populations in the pandemic. Recently, it has been reported that the indigenous groups of Brazil have been massively affected by COVID-19. Series of studies have shown that many of the indigenous communities reached at the verge of extinction due to this pandemic. Importantly, South Asia also has several indigenous and smaller communities, that are living in isolation. Till date, despite the two consecutive waves in India, there is no report on the impact of COVID-19 for indigenous tribes. Since smaller populations experiencing drift may have greater risk of such pandemic, we have analysed Runs of Homozygosity (ROH) among South Asian populations and identified several populations with longer homozygous segments. The longer runs of homozygosity at certain genomic regions may increases the susceptibility for COVID-19. Thus, we suggest extreme careful management of this pandemic among isolated populations of South Asia.
Identifiants
pubmed: 34635809
doi: 10.1038/s41435-021-00150-8
pii: 10.1038/s41435-021-00150-8
pmc: PMC8504558
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
47-50Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Coronavirus in India: Latest Map and Case Count [Internet]. [cited 2020 May 13]. Available from: https://www.covid19india.org
Gupta N, Kaur H, Yadav PD, Mukhopadhyay L, Sahay RR, Kumar A, et al. Clinical Characterization and Genomic Analysis of Samples from COVID-19 Breakthrough Infections during the Second Wave among the Various States of India. Viruses. 2021;13:1782.
pubmed: 34578363
pmcid: 8472862
doi: 10.3390/v13091782
Ranjan R, Sharma A, Verma MK Characterization of the Second Wave of COVID-19 in India. medRxiv. 2021; https://doi.org/10.1101/2021.04.17.21255665
Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, et al. Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum. Cell. 2021;184:4220–36.
pubmed: 34242578
pmcid: 8218332
doi: 10.1016/j.cell.2021.06.020
Roy B, Dhillon J, Habib N, Pugazhandhi B. Global variants of COVID-19: Current understanding. J Biomed Sci. 2021;8:8–11.
doi: 10.3126/jbs.v8i1.38453
Murhekar MV, Bhatnagar T, Selvaraju S, Saravanakumar V, Thangaraj JWV, Shah N, et al. SARS-CoV-2 antibody seroprevalence in India, August–September, 2020: findings from the second nationwide household serosurvey. Lancet Glob Health. 2021;9:e257–66.
pubmed: 33515512
pmcid: 7906675
doi: 10.1016/S2214-109X(20)30544-1
Singh PP, Chaubey G RE: Why there is a second wave in India? 2021; Science e-letter.
Kupferschmidt K, Wadman M. Delta variant triggers new phase in the pandemic. Science. Science. 2021;372:1375–76.
doi: 10.1126/science.372.6549.1375
Naushin S, Sardana V, Ujjainiya R, Bhatheja N, Kutum R, Bhaskar AK, et al. Insights from a Pan India Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2. Elife 2021;10:e66537.
pubmed: 33876727
pmcid: 8118652
doi: 10.7554/eLife.66537
Koshy J. Coronavirus | Kerala has the lowest seroprevalance among 21 States, M.P. has the highest: ICMR study. The Hindu [Internet]. 2021 Jul 28 [cited 2021 Aug 6]; Available from: https://www.thehindu.com/news/national/coronavirus-kerala-has-the-lowest-seroprevalance-among-21-states-mp-has-the-highest-icmr-study/article35594182.ece
Power T, Wilson D, Best O, Brockie T, Bearskin LB, Millender E, et al. COVID‐19 and indigenous peoples: an imperative for action. J Clin Nurs. 2020; https://doi.org/10.1111/jocn.15320
Amigo I. Indigenous communities in Brazil fear pandemic’s impact. Science. 2020;368:352.
pubmed: 32327576
doi: 10.1126/science.368.6489.352
Charlier P, Varison L. Is COVID-19 being used as a weapon against Indigenous Peoples in Brazil? Lancet. 2020;396:1069–70.
pubmed: 33038965
pmcid: 7544476
doi: 10.1016/S0140-6736(20)32068-7
Ferrante L, Fearnside PM. Protect Indigenous peoples from COVID-19. Science. 2020;368:251–251.
pubmed: 32299940
doi: 10.1126/science.abc0073
Palamim CVC, Ortega MM, Marson FAL. COVID-19 in the Indigenous Population of Brazil. J Racial Ethn Health Disparities. 2020;7:1053–8.
pubmed: 33025421
doi: 10.1007/s40615-020-00885-6
Polidoro M, de Assis Mendonça F, Meneghel SN, Alves-Brito A, Gonçalves M, Bairros F, et al. Territories under siege: risks of the decimation of indigenous and Quilombolas peoples in the context of COVID-19 in South Brazil. J Racial Ethn Health Disparities. 2021;8:1119–1129.
pubmed: 32936443
doi: 10.1007/s40615-020-00868-7
Kivisild T, Rootsi S, Metspalu M, Metspalu E, Parik J, Kaldma K, et al. The genetics of language and farming spread in India. In: Bellwood P, Renfrew C, editors. Examining the farming/language dispersal hypothesis. Cambridge: The McDonald Institute for Archaeological Research; 2003. p. 215–22.
Census of India Website: Office of the Registrar General & Census Commissioner, India [Internet]. [cited 2021 Jan 5]. Available from: https://censusindia.gov.in/2011-common/censusdata2011.html
Cooper Z. Archaeology and History: Early settlements in the Andaman Islands. New Delhi and Oxford: Oxford University press; 2002.
Xing J, Watkins WS, Hu Y, Huff CD, Sabo A, Muzny DM, et al. Genetic diversity in India and the inference of Eurasian population expansion. Genome Biol. 2010;11:R113.
pubmed: 21106085
pmcid: 3156952
doi: 10.1186/gb-2010-11-11-r113
Chaubey G, Metspalu M, Kivisild T, Villems R. Peopling of South Asia: investigating the caste-tribe continuum in India. BioEssays N. Rev Mol Cell Dev Biol. 2007;29:91–100.
Reed DH, Frankham R. Correlation between fitness and genetic diversity. Conserv Biol. 2003;17:230–7.
doi: 10.1046/j.1523-1739.2003.01236.x
Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet. 2003;4:293–340.
pubmed: 14527305
doi: 10.1146/annurev.genom.4.070802.110226
Lyons EJ, Frodsham AJ, Zhang L, Hill AV, Amos W. Consanguinity and susceptibility to infectious diseases in humans. Biol Lett. 2009;5:574–6.
pubmed: 19324620
pmcid: 2684220
doi: 10.1098/rsbl.2009.0133
Cooke GS, Hill AV. Genetics of susceptibitlity to human infectious disease. Nat Rev Genet. 2001;2:967–77.
pubmed: 11733749
doi: 10.1038/35103577
Chaubey G. Coronavirus (SARS-CoV-2) and Mortality Rate in India: The Winning Edge. Front Public Health. 2020;8:397.
pubmed: 32850604
pmcid: 7396667
doi: 10.3389/fpubh.2020.00397
Srivastava A, Bandopadhyay A, Das D, Pandey RK, Singh V, Khanam N, et al. Genetic association of ACE2 rs2285666 polymorphism with COVID-19 spatial distribution in India. Front Genet. 2020;11:1163.
doi: 10.3389/fgene.2020.564741
Srivastava A, Pandey RK, Singh PP, Kumar P, Rasalkar AA, Tamang R, et al. Most frequent South Asian haplotypes of ACE2 share identity by descent with East Eurasian populations. PLOS ONE. 2020;15(Sep):e0238255.
pubmed: 32936832
pmcid: 7494073
doi: 10.1371/journal.pone.0238255
Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP. Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc Natl Acad Sci. 2009;106:7073–8.
pubmed: 19359493
pmcid: 2678448
doi: 10.1073/pnas.0811357106
Bairagya BB, Bhattacharya P, Bhattacharya SK, Dey B, Dey U, Ghosh T, et al. Genetic variation and haplotype structures of innate immunity genes in eastern India. Infect Genet Evol. 2008;8:360–6.
pubmed: 18396467
pmcid: 2762703
doi: 10.1016/j.meegid.2008.02.009
Souilmi Y, Lauterbur ME, Tobler R, Huber CD, Johar AS, Moradi SV, et al. An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia. Curr Biol. 2021;31:3504–3514.
pubmed: 34171302
pmcid: 8223470
doi: 10.1016/j.cub.2021.05.067
Hamamy H, Antonarakis SE, Cavalli-Sforza LL, Temtamy S, Romeo G, Ten Kate LP, et al. Consanguineous marriages, pearls and perils: Geneva international consanguinity workshop report. Genet Med. 2011;13:841–7.
pubmed: 21555946
doi: 10.1097/GIM.0b013e318217477f
McQuillan R, Leutenegger A-L, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, et al. Runs of homozygosity in European populations. Am J Hum Genet. 2008;83:359–72.
pubmed: 18760389
pmcid: 2556426
doi: 10.1016/j.ajhg.2008.08.007
Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of homozygosity record population history and consanguinity. PloS One. 2010;5:e13996.
pubmed: 21085596
pmcid: 2981575
doi: 10.1371/journal.pone.0013996
Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–34.
pubmed: 29335644
doi: 10.1038/nrg.2017.109
Christofidou P, Nelson CP, Nikpay M, Qu L, Li M, Loley C, et al. Runs of homozygosity: association with coronary artery disease and gene expression in monocytes and macrophages. Am J Hum Genet. 2015;97:228–37.
pubmed: 26166477
pmcid: 4573243
doi: 10.1016/j.ajhg.2015.06.001
Ghani M, Reitz C, Cheng R, Vardarajan BN, Jun G, Sato C, et al. Association of long runs of homozygosity with Alzheimer disease among African American individuals. JAMA Neurol. 2015;72:1313–23.
pubmed: 26366463
pmcid: 4641052
doi: 10.1001/jamaneurol.2015.1700
Szpiech ZA, Xu J, Pemberton TJ, Peng W, Zöllner S, Rosenberg NA, et al. Long runs of homozygosity are enriched for deleterious variation. Am J Hum Genet. 2013;93:90–102.
pubmed: 23746547
pmcid: 3710769
doi: 10.1016/j.ajhg.2013.05.003
Nakatsuka N, Moorjani P, Rai N, Sarkar B, Tandon A, Patterson N, et al. The promise of discovering population-specific disease-associated genes in South Asia. Nat Genet. 2017;49:1403.
pubmed: 28714977
pmcid: 5675555
doi: 10.1038/ng.3917
Pathak AK, Srivastava A, Singh PP, Das D, Bandopadhyay A, Singh P, et al. Historic migration to South Asia in the last two millennia: A case of Jewish and Parsi populations. J Biosci. 2019;44(Jul):72.
pubmed: 31389361
doi: 10.1007/s12038-019-9873-7
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ Second-generation PLINK: rising to the challenge of larger and richer data sets. GigaScience. 2015;4. s13742-015-0047-8.
Chaubey G, Ayub Q, Rai N, Prakash S, Mushrif-Tripathy V, Mezzavilla M, et al. “Like sugar in milk”: reconstructing the genetic history of the Parsi population. Genome Biol. 2017;18:110.
pubmed: 28615043
pmcid: 5470188
doi: 10.1186/s13059-017-1244-9
Chaubey G, Singh M, Rai N, Kariappa M, Singh K, Singh A, et al. Genetic affinities of the Jewish populations of India. Sci Rep. 2016;6:19166.
pubmed: 26759184
pmcid: 4725824
doi: 10.1038/srep19166
Thangaraj K, Gupta NJ, Pavani K, Reddy AG, Subramainan S, Rani DS, et al. Y chromosome deletions in azoospermic men in India. J Androl. 2003;24:588–97.
pubmed: 12826698
doi: 10.1002/j.1939-4640.2003.tb02710.x
Chaubey G, Endicott P. The Andaman Islanders in a regional genetic context: reexamining the evidence for an early peopling of the archipelago from South Asia. Hum Biol. 2013;85:153–72.
pubmed: 24297224
doi: 10.3378/027.085.0307
Aghakhanian F, Yunus Y, Naidu R, Jinam T, Manica A, Hoh BP, et al. Unravelling the genetic history of negritos and indigenous populations of southeast Asia. Genome Biol Evol. 2015;7:1206–15.
pubmed: 25877615
pmcid: 4453060
doi: 10.1093/gbe/evv065
Basu A, Sarkar-Roy N, Majumder PP. Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure. Proc Natl Acad Sci USA. 2016;113:1594–9.
pubmed: 26811443
pmcid: 4760789
doi: 10.1073/pnas.1513197113
Fu Q, Meyer M, Gao X, Stenzel U, Burbano HA, Kelso J, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci. 2013;110:2223–7.
pubmed: 23341637
pmcid: 3568306
doi: 10.1073/pnas.1221359110
Wang C-C, Yeh H-Y, Popov AN, Zhang H-Q, Matsumura H, Sirak K, et al. Genomic insights into the formation of human populations in East Asia. Nature. 2021;591:413–9.
pubmed: 33618348
pmcid: 7993749
doi: 10.1038/s41586-021-03336-2
Ghosh, S. Why the Andaman tribes need isolation [Internet]. Nature India. [cited 2020 Jul 2]. Available from: https://www.natureasia.com/en/nindia/article/10.1038/nindia.2019.39
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.
pubmed: 32007145
pmcid: 7159086
doi: 10.1016/S0140-6736(20)30251-8
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–3.
pubmed: 32015507
pmcid: 7095418
doi: 10.1038/s41586-020-2012-7
Wu Y, Li J, Wang C, Zhang L, Qiao H. The ACE 2 G8790A polymorphism: involvement in type 2 diabetes mellitus combined with cerebral stroke. J Clin Lab Anal. 2017;31:e22033.
doi: 10.1002/jcla.22033
Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging. 2020;12:10087.
pubmed: 32501810
pmcid: 7346072
doi: 10.18632/aging.103415
Chen Y, Zhang P, Zhou X, Liu D, Zhong J, Zhang C, et al. Relationship between genetic variants of ACE 2 gene and circulating levels of ACE 2 and its metabolites. J Clin Pharm Ther. 2018;43:189–95.
pubmed: 28895159
doi: 10.1111/jcpt.12625
Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 2020;587:610–2.
pubmed: 32998156
doi: 10.1038/s41586-020-2818-3
Singh PP, Srivastava A, Sultana GNN, Khanam N, Pathak A, Suravajhala P, et al. The major genetic risk factor for severe COVID-19 does not show any association among South Asian populations. Sci Rep. 2021;11:1–4.
doi: 10.1038/s41598-021-94864-4
Chaubey G, Metspalu M, Choi Y, Mägi R, Romero IG, Soares P, et al. Population genetic structure in indian austroasiatic speakers: the role of landscape barriers and sex-specific admixture. Mol Biol Evol. 2011;28:1013–24.
pubmed: 20978040
doi: 10.1093/molbev/msq288
Tamang R, Chaubey G, Nandan A, Govindaraj P, Singh VK, Rai N, et al. Reconstructing the demographic history of the Himalayan and adjoining populations. Hum Genet. 2018;137:129–39.
pubmed: 29356938
doi: 10.1007/s00439-018-1867-2
Thangaraj K, Chaubey G, Kivisild T, Selvi Rani D, Singh VK, Ismail T, et al. Maternal footprints of Southeast Asians in North India. Hum Hered. 2008;66:1–9.
pubmed: 18223312
pmcid: 2588665
doi: 10.1159/000114160
Chaubey G. East Asian Ancestry in India. Ind J Phys Anthr Hum Genet. 2015;34:193–9.
Möhlendick B, Schönfelder K, Breuckmann K, Elsner C, Babel N, Balfanz P, et al. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharmacogenet Genomics. 2021; https://doi.org/10.1097/FPC.0000000000000436
Barik SS, Sahani R, Prasad BV, Endicott P, Metspalu M, Sarkar BN, et al. Detailed mtDNA genotypes permit a reassessment of the settlement and population structure of the Andaman Islands. Am J Phys Anthr. 2008;136:19–27.
doi: 10.1002/ajpa.20773
Nagaraja, KS. The Nihali Language (Grammar, Texts and Vocabulary). Mysore: Central Institute of Indian Languages; 2014.
GenomeAsia100K Consortium. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature. 2019;576:106.
doi: 10.1038/s41586-019-1793-z