Investigation on exopolysaccharide production by Lacticaseibacillus rhamnosus P14 isolated from Moroccan raw cow's milk.

Lacticaseibacillus rhamnosus Moroccan raw milk characterization exopolysaccharide production purification

Journal

Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052

Informations de publication

Date de publication:
Nov 2021
Historique:
revised: 06 09 2021
received: 26 04 2021
accepted: 09 09 2021
pubmed: 14 10 2021
medline: 26 11 2021
entrez: 13 10 2021
Statut: ppublish

Résumé

Twenty-four strains were isolated from 50 samples of raw cow's milk originated from different regions of Morocco. After different screening methods, one strain was selected as the highest exopolysaccharide (EPS)-producing isolate and was identified by 16S rDNA sequencing as Lacticaseibacillus rhamnosus P14. Moreover, the EPS-producing ability, bacterial growth, and pH of the medium were monitored. The optimization of culture conditions indicated that the high yield of EPS was 685.14 mg/L obtained at 42°C, with lactose as a carbon source. The characterization study showed that the purified EPS consisted of one main fraction that contained 97.67% of carbohydrates. Furthermore, the EPS was identified as a homogeneous polysaccharide, mainly composed of glucose. These results demonstrated the high EPS production ability of the selected L. rhamnosus P14, representing a promising candidate to improve the textural and sensory properties of fermented food.

Identifiants

pubmed: 34642967
doi: 10.1111/1750-3841.15941
doi:

Substances chimiques

Polysaccharides, Bacterial 0
Lactose J2B2A4N98G

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4840-4850

Informations de copyright

© 2021 Institute of Food Technologists®.

Références

Abid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M. M., Attia, H., & Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules, 108, 719-728. https://doi.org/10.1016/j.ijbiomac.2017.10.155
Adesulu-Dahunsi, A. T., Sanni, A. I., & Jeyaram, K. (2018). Production, characterization, and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT, 87, 432-442. https://doi.org/10.1016/j.lwt.2017.09.013
Bachtarzi, N., Kharroub, K., & Ruas-Madiedo, P. (2019). Exopolysaccharide-producing lactic acid bacteria isolated from traditional Algerian dairy products and their application for skim-milk fermentations. LWT, 107, 117-124. https://doi.org/10.1016/j.lwt.2019.03.005
Bengoa, A. A., Llamas, M. G., Iraporda, C., Dueñas, M. T., Abraham, A. G., & Garrote, G. L. (2018). Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiology, 69, 212-218. https://doi.org/10.1016/j.fm.2017.08.012 PMID: 28941904
Biliavska, L., Pankivska, Y., Povnitsa, O., & Zagorodnya, S. (2019). Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc, and Lactobacillus against human adenovirus type 5. Medicina, 55(9), 519. https://doi.org/10.3390/medicina55090519
Bouzar, F., Cerning, J., & Desmazeaud, M. (1996). Exopolysaccharide production in milk by Lactobacillus delbrueckii ssp. Bulgaricus CNRZ 1187 and by two colonial variants. Journal of Dairy Science, 79(2), 205-211. http://www.sciencedirect.com/science/article/pii/S002203029676352X
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. PMID: 942051
Chabot, S., Yu, H.-L., De Léséleuc, L., Cloutier, D., Van Calsteren, M.-R., Lessard, M., Roy, D., Lacroix, M., & Oth, D. (2001). Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-γ in mouse splenocytes, Le Lait, 81(6), 683-697.
Degeest, B., Janssens, B., & De Vuyst, L. (2001). Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: Production kinetics, enzyme activities, and EPS yields. Journal of Applied Microbiology, 91(3), 470-477. PMID: 11556912
Del Rio, B., Redruello, B., Fernandez, M., Martin, M. C., Ladero, V., & Alvarez, M. A. (2019). Lactic acid bacteria as a live delivery system for the in situ production of nanobodies in the human gastrointestinal tract. Frontiers in Microbiology, 9, 3179. https://doi.org/10.3389/fmicb.2018.03179
Di, W., Zhang, L., Wang, S., Yi, H., Han, X., Fan, R., & Zhang, Y. (2017). Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk. Carbohydrate Polymers, 171, 307-315. https://doi.org/10.1016/j.carbpol.2017.03.018 PMID: 28578968
De Vuyst, L., Vanderveken, F., Van De Ven, S., & Degeest, B. (1998). Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. Journal of Applied Microbiology, 84(6), 1059-1068. PMID: 9717291
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
Farinazzo, F. S., Valente, L. J., Almeida, M. B., Simionato, A. S., Fernandes, M. T. C., Mauro, C. S. I., Tomal, A. A. B., & Garcia, S. (2019). Characterization and antioxidant activity of an exopolysaccharide produced by Leuconostoc pseudomesenteroides JF17 from juçara fruits (Euterpe edulis Martius). Process Biochemistry, 91, 141-148. https://doi.org/10.1016/j.procbio.2019.12.005
Feng, F., Zhou, Q., Yang, Y., Zhao, F., Du, R., Han, Y., & Zhou, Z. (2019). Structural characterization of glucan produced by Lactobacillus sake L-7 from sausage. Transactions of Tianjin University, 25(1), 78-84. https://doi.org/10.1007/s12209-018-0150-x
Fukuda, K., Shi, T., Nagami, K., Leo, F., Nakamura, T., Yasuda, K., Senda, A., Motoshima, H., & Urashima, T. (2010). Effects of carbohydrate source on physicochemical properties of the exopolysaccharide produced by Lactobacillus fermentum TDS030603 in a chemically defined medium. Carbohydrate Polymers, 79(4), 1040-1045. https://doi.org/10.1016/j.carbpol.2009.10.037
Garcia-Castillo, V., Marcial, G., Albarracín, L., Tomokiyo, M., Clua, P., Takahashi, H., Kitazawa, H., Garcia-Cancino, A., & Villena, J. (2020). The exopolysaccharide of Lactobacillus fermentum UCO-979C is partially involved in its immunomodulatory effect and its ability to improve the resistance against Helicobacter pylori infection. Microorganisms, 8(4), 479. https://doi.org/10.3390/microorganisms8040479
Godon, J. J., Zumstein, E., Dabert, P., Habouzit, F., & Moletta, R. (1997). Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Applied and Environmental Microbiology, 63(7), 2802-2813. PMID: 9212428
Górska-Frączek, S., Sandström, C., Kenne, L., Rybka, J., Strus, M., Heczko, P., & Gamian, A. (2011). Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from Lactobacillus rhamnosus KL37B. Carbohydrate Research, 346(18), 2926-2932. https://doi.org/10.1016/j.carres.2011.10.024 PMID:, 22063501
Harutoshi, T. (2013). Exopolysaccharides of Lactic Acid Bacteria for Food and Colon Health Applications. In J. M. Kongo (Ed.), Lactic acid bacteria-R & D for food, health and livestock purposes. InTech. https://doi.org/10.5772/50839
Insulkar, P., Kerkar, S., & Lele, S. S. (2018). Purification and structural-functional characterization of an exopolysaccharide from Bacillus licheniformis PASS26 with in-vitro antitumor and wound healing activities. International Journal of Biological Macromolecules, 120, 1441-1450. https://doi.org/10.1016/j.ijbiomac.2018.09.147 PMID: 30261252
Kanmani, P., Albarracin, L., Kobayashi, H., Hebert, E. M., Saavedra, L., Komatsu, R., Gatica, B., Miyazaki, A., Ikeda-Ohtsubo, W., Suda, Y., Aso, H., Egusa, S., Mishima, T., Salas-Burgos, A., Takahashi, H., Villena, J., & Kitazawa, H. (2018). Genomic characterization of Lactobacillus delbrueckii TUA4408L and evaluation of the antiviral activities of its extracellular polysaccharides in porcine intestinal epithelial cells. Frontiers in Immunology, 9, 2178. https://doi.org/10.3389/fimmu.2018.02178
Kim, K., Lee, G., Thanh, H. D.,, Kim, J.-H., Konkit, M., Yoon, S., Park, M., Yang, S., Park, E., & Kim, W. (2018). Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. Journal of Dairy Science, 101(7), 5702-5712. https://doi.org/10.3168/jds.2017-14151 PMID: 29627242
Kimmel, S. A., Roberts, R. F., & Ziegler, G. R. (1998). Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. BulgaricusRR grown in a semidefined medium. Applied and Environmental Microbiology, 64(2), 659-664. PMID: 9464404
Konieczna, C., Słodziński, M., & Schmidt, M. T. (2018). Exopolysaccharides produced by Lactobacillus rhamnosus KL 53A and Lactobacillus casei Fyos affect their adhesion to enterocytes. Polish Journal of Microbiology, 67(3), 273-281. https://doi.org/10.21307/pjm-2018-032 PMID:30451443
Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375-384. https://doi.org/10.1016/j.tifs.2021.02.014
Krishnamurthy, M., Uthaya, C. J., Thangavel, M., Annadurai, V., Rajendran, R., & Gurusamy, A. (2020). Optimization, compositional analysis, and characterization of exopolysaccharides produced by multi-metal resistant Bacillus cereus KMS3-1. Carbohydrate Polymers, 227, 115369. https://doi.org/10.1016/j.carbpol.2019.115369 PMID: 31590875
Malaka, R., Maruddin, F., Dwyana, Z., & Vargas, M. V. (2020). Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. Bulgaricus ropy strain in different substrate media. Food Science & Nutrition, 8(3), 1657-1664. https://doi.org/10.1002/fsn3.1452
Mende, S., Jaros, D., & Rohm, H. (2019). Dextran modulates physical properties of rennet-induced milk gels. International Journal of Food Science & Technology, 55(4), 1407-1415. https://doi.org/10.1111/ijfs.14288
Mende, S., Rohm, H., & Jaros, D. (2016). Influence of exopolysaccharides on the structure, texture, stability, and sensory properties of yoghurt and related products. International Dairy Journal, 52, 57-71. https://doi.org/10.1016/j.idairyj.2015.08.002
Mıdık, F., Tokatlı, M., Bağder Elmacı, S., & Özçelik, F. (2020). Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Archives of Microbiology, 202, 875-885. https://doi.org/10.1007/s00203-019-01799-6
Nachtigall, C., Berger, C., Kovanović, T., Wefers, D., Jaros, D., & Rohm, H. (2019). Shear induced molecular changes of exopolysaccharides from lactic acid bacteria. Food Hydrocolloids, 97, 105181. https://doi.org/10.1016/j.foodhyd.2019.105181
Nagai, T., Makino, S., Ikegami, S., Itoh, H., & Yamada, H. (2011). Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. Bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. International Immunopharmacology, 11(12), 2246-2250. https://doi.org/10.1016/j.intimp.2011.09.012 PMID: 21986509
Oleksy, M., & Klewicka, E. L. (2017). Capsular polysaccharides of lactobacillus spp.: Theoretical and practical aspects of simple visualization methods. Probiotics and Antimicrobial Proteins, 9(4), 425-434. https://doi.org/10.1007/s12602-017-9295-5 PMID:28643226
Pachekrepapol, U., Lucey, J. A., Gong, Y., Naran, R., & Azadi, P. (2017). Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains. Journal of Dairy Science, 100(5), 3424-3435. https://doi.org/10.3168/jds.2016-12125 PMID: 28318581
Péant, B., Lapointe, G., Gilbert, C., Atlan, D., Ward, P., & Roy, D. (2005). Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology, 151(6), 1839-1851. https://doi.org/10.1099/mic.0.27852-0 PMID: 15941992
Pingitore, E. V., Pessione, A., Fontana, C., Mazzoli, R., & Pessione, E. (2016). Comparative proteomic analyses for elucidating metabolic changes during EPS production under different fermentation temperatures by Lactobacillus plantarum Q823. International Journal of Food Microbiology, 238, 96-102. https://doi.org/10.1016/j.ijfoodmicro.2016.08.010 PMID: 27611800
Pham, P. L., Dupont, I., Roy, D., Lapointe, G., & Cerning, J. (2000). Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Applied and Environmental Microbiology, 66(6), 2302-2310. https://doi.org/10.1128/AEM.66.6.2302-2310.2000 PMID: 10831403
Polak-Berecka, M., Choma, A., Waśko, A., Górska, S., Gamian, A., & Cybulska, J. (2015). Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydrate Polymers, 117, 501-509. https://doi.org/10.1016/j.carbpol.2014.10.006 PMID: 25498664
Rajoka, M. S. R., Jin, M., Haobin, Z., Li, Q. I., Shao, D., Jiang, C., Huang, Q., Yang, H., Shi, J., & Hussain, N. (2018). Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. LWT, 89, 638-647. https://doi.org/10.1016/j.lwt.2017.11.034
Saadat, Y. R., Khosroushahi, A. Y., & Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory, and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79-89. https://doi.org/10.1016/j.carbpol.2019.04.025 PMID: 31079688
Shang, N., Xu, R., & Li, P. (2013). Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH. Carbohydrate Polymers, 91(1), 128-134. https://doi.org/10.1016/j.carbpol.2012.08.012 PMID: 23044113
Shao, L. I., Wu, Z., Zhang, H., Chen, W., Ai, L., & Guo, B. (2014). Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers, 107, 51-56. https://doi.org/10.1016/j.carbpol.2014.02.037 PMID: 24702917
Shirzad, M., Hamedi, J., Motevaseli, E., & Modarressi, M. H. (2018). Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 1051-1061. https://doi.org/10.1080/21691401.2018.1443274 PMID: 29486611
Siddiqui, N. N., Aman, A., Silipo, A., Qader, S. A. U., & Molinaro, A. (2014). Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydrate Polymers, 99, 331-338. https://doi.org/10.1016/j.carbpol.2013.08.004 PMID: 24274515
Silva, L. A., Neto, J. H. P. L., & Cardarelli, H. R. (2019). Exopolysaccharides produced by Lactobacillus plantarum: Technological properties, biological activity, and potential application in the food industry. Annals of Microbiology, 69(4), 321-328. https://doi.org/10.1007/s13213-019-01456-9
Sutherland, I. W. (1972). Bacterial exopolysaccharides. In A.H. Rose & D.W. Tempest, Advances in microbial physiology (Vol. 8, pp. 143-213). Elsevier.
Tallon, R., Bressollier, P., & Urdaci, M. C. (2003). Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Research in Microbiology, 154(10), 705-712. https://doi.org/10.1016/j.resmic.2003.09.006 PMID: 14643409
Tu, N., Dat, N., Canh, L., & Vinh, D. (2018). Detection of the potential inactivation of tetrodotoxin by lactic acid bacterial exopolysaccharide. Toxins, 10(7), 288.
Wang, K., Niu, M., Yao, D., Zhao, J., Wu, Y., & Lu, B., Zheng, X. (2019). Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1. International Journal of Biological Macromolecules, 139, 252-261. https://doi.org/10.1016/j.ijbiomac.2019.07.200 PMID: 31374277
Wei, Y., Li, F., Li, L. E., Huang, L., & Li, Q. (2019). Genetic and biochemical characterization of an exopolysaccharide with in vitro antitumoral activity produced by Lactobacillus fermentum YL-11. Frontiers in Microbiology, 10, 2898. https://doi.org/10.3389/fmicb.2019.02898
Yang, Y., Latorre, J. D., Khatri, B., Kwon, Y. M., Kong, B. W., Teague, K. D., Graham, L. E., Wolfenden, A. D., Mahaffey, B. D., Baxter, M., Hernandez-Velasco, X., Merino-Guzman, R., Hargis, B. M., & Tellez, G. (2018). Characterization and evaluation of lactic acid bacteria candidates for intestinal epithelial permeability and Salmonella Typhimurium colonization in neonatal turkey poults. Poultry Science, 97(2), 515-521. https://doi.org/10.3382/ps/pex311 PMID: 29077972
Zannini, E., Waters, D. M., Coffey, A., & Arendt, E. K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121-1135. https://doi.org/10.1007/s00253-015-7172-2 PMID: 26621802
Zhou, K., Zeng, Y., Yang, M., Chen, S., He, L., Ao, X., Zou, L., & Liu, S. (2016). Production, purification, and structural study of an exopolysaccharide from Lactobacillus plantarum BC-25. Carbohydrate Polymers, 144, 205-214. https://doi.org/10.1016/j.carbpol.2016.02.067 PMID: 27083810

Auteurs

Sihame Akhtach (S)

Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco.
Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), High School of Technology, Sidi Mohamed Ben Abdallah University, Atlas Fez, Morocco.

Zakaria Tabia (Z)

Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco.

Meriem Bricha (M)

Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco.

Rajae Belkhou (R)

Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), High School of Technology, Sidi Mohamed Ben Abdallah University, Atlas Fez, Morocco.

Khalil El Mabrouk (KE)

Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH