Oriented homo-epitaxial crystallization of polylactic acid displaying a biomimetic structure and improved blood compatibility.
PLA
biomimetic
blood compatibility
homo-epitaxial crystallization
orientation
Journal
Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
revised:
23
09
2021
received:
26
02
2021
accepted:
06
10
2021
pubmed:
16
10
2021
medline:
1
4
2022
entrez:
15
10
2021
Statut:
ppublish
Résumé
Epitaxial crystallization and solid hot-drawing technology were employed to fabricate oriented homo-epitaxial crystallization of polylactic acid (PLA) with nano-topography to enhance its blood compatibility and mechanical characteristics as blood-contacting medical devices. The process involved solid hot stretching the PLA plates. A PLA nutrient solution was then used to immerse the oriented plates to dissolve some of the PLA solutes, ensuring plate integrity. Consequently, the drawing process exponentially enhanced the modulus and tensile strength of the PLA. Orientation and epitaxial crystallization could substantially enhance blood compatibility of PLA by prolonging clotting time and decreasing hemolysis rate, protein adsorption, and platelet activation. The oriented homo-epitaxial crystallization of PLA exhibited a nano-topography and fibrous structure similar to the intimal layer of a blood vessel, and this biomimetic structure was advantageous in decreasing the activation and/or adhesion of platelets.
Substances chimiques
Polyesters
0
poly(lactide)
459TN2L5F5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
684-695Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Mohammadi MS, Bureau MN, Nazhat SN. Polylactic acid (PLA) biomedical foams for tissue engineering. Biomed Foams Tissue Eng Appl. 2014;105:313-334. https://doi.org/10.1533/9780857097033.2.313
Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127:1612-1626. https://doi.org/10.1111/jam.14290
Lizundia E, Meaurio E, Laza JM, Vilas JL, Isidro LML. Study of the chain microstructure effects on the resulting thermal properties of poly(l-lactide)/poly(N-isopropylacrylamide) biomedical materials. Mater Sci Eng C. 2015;50:97-106. https://doi.org/10.1016/j.msec.2015.01.097
Dong WY, Zeng QH, Yin XQ, Liu HF, Lv J, Zhu L. Preparation and blood compatibility of electrospun nanofibrous CTS/PLA mats from chitosan nanopowders and poly(lactic acid). Polym Compos. 2018;39:416-425. https://doi.org/10.1002/pc.24500
Adrar S, Habi A, Ajji A, Grohens Y. Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends. Appl Clay Sci. 2018;157:65-75. https://doi.org/10.1016/j.clay.2018.02.028
Liu XL, Yuan L, Li D, et al. Blood compatible materials: state of the art. J Mater Chem B. 2014;2:5718-5738. https://doi.org/10.1039/C4TB00881B
Haraguchi K. Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J. 2011;43:223-241. https://doi.org/10.1038/pj.2010.141
Xix-Rodriguez C, Varguez-Catzim P, Alonzo-García A. Amphiphilic poly(lactic acid) membranes with low fouling and enhanced Hemodiafiltration. Sep Purif Technol. 2020;259:118124. https://doi.org/10.1016/j.seppur.2020.118124
Khalifehzadeh R, Ratner BD. Trifluoromethyl-functionalized poly(lactic acid): a fluoropolyester designed for blood contact applications. Biomater Sci. 2019;7:3764-3778. https://doi.org/10.1039/C9BM00353C
Demel A, Cousins BG, Seifalian A. Surface modification of biomaterials: a quest for blood compatibility. Int J Biomater. 2012;2012:707863-707871. https://doi.org/10.1155/2012/707863
Huang SB, Wu TT, Yu HY. Biomimetics using nanotechnology/nanoparticles in dental tissue regeneration. Nanobiomater Clin Dent. 2013;20:411-428. https://doi.org/10.1016/B978-1-4557-3127-5.00020-9
Duan YR, Sun X, Gong T, Wang Q, Zhang ZR. Preparation of DHAQ-loaded mPEG-PLGA-mPEG nanoparticles and evaluation of drug release behaviors in vitro/in vivo. J Mater Sci Mater Med. 2006;17:509-516. https://doi.org/10.1007/s10856-006-8933-3
Li JL, Liu F, Yu XM, Wu ZY, Wang YZ. APTES assisted surface heparinization of polylactide porous membranes for improved hemocompatibility. RSC Adv. 2016;6:42684-42692. https://doi.org/10.1039/C6RA04525A
Kang Y, Wang CL, Qiao YB. Tissue-engineered trachea consisting of electrospun patterned sc-PLA/GO-g-IL fibrous membranes with antibacterial property and 3D-printed skeletons with elasticity. Biomacromolecules. 2019;20:1765-1177. https://doi.org/10.1021/acs.biomac.9b00160
Wang YT, Yang HG, Liu HZ. Controllable domain morphology in coated poly(lactic acid) films for high-efficiency and high-precision transportation of water droplet arrays. RSC Adv. 2017;7:53525-53531. https://doi.org/10.1039/C7RA09283K
Rim NG, Yih A, Hsi P, Wang YJ. Micropatterned cell sheets as structural building blocks for biomimetic vascular patches. Biomaterials. 2018;181:126-139. https://doi.org/10.1016/j.biomaterials.2018.07.047
Yan C, Li H, Zhang J. Surface-induced anisotropic chain ordering of Polycarprolactone on oriented polyethylene substrate: epitaxy and soft epitaxy. Macromolecules. 2006;39:8041-8048. https://doi.org/10.1021/ma061188v
Qu SY, Yao Q, Wang LM, Chen ZH, Xu KQ. Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG Asia Mater. 2016;8:292-303. https://doi.org/10.1038/am.2016.97
Wu J, Wang EG, Varga K. Island shape selection in Pt(111) submonolayer Homoepitaxy with or without CO as an adsorbate. Phys Rev Lett. 2002;89:146103-146107. https://doi.org/10.1103/PhysRevLett.89.146103
Xin J, Mi HY, Cordie TM. Fabrication of shish-kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils: effect of solvents and matrigel functionalization. Polymer. 2014;55:5396-5406. https://doi.org/10.1016/j.polymer.2014.08.061
Chen W, Sun Y, Fu J. Microfabricated nanotopological surfaces for study of adhesion-dependent cell mechanosensitivity. Small. 2013;9:81-89. https://doi.org/10.1002/smll.201201098
Li ZQ, Zhao XL, Ye L. Fibrillation of chain branched poly (lactic acid) with improved blood compatibility and bionic structure. Chem Eng J. 2015;279:767-776. https://doi.org/10.1016/j.cej.2015.05.082
Zhao A, Wang Z. Titanium oxide films with vacuum thermal treatment for enhanced hemocompatibility. Surf Eng. 2015;31:898-903. https://doi.org/10.1179/1743294414Y.0000000367
Billimoria K, Heeley EL, Parsons N. An investigation into the crystalline morphology transitions in poly-L-lactic acid (PLLA) under uniaxial deformation in the quasi-solid-state regime. Eur Polym J. 2018;101:127-139. https://doi.org/10.1016/j.eurpolymj.2018.01.031
Jaffer IH, Weitz JI. The blood compatibility challenge part 1: blood-contacting medical devices: the scope of the problem. Acta Biomater. 2019;94:2-10. https://doi.org/10.1016/j.actbio.2019.06.021
Huang SY, Yu DH, Christiansen J. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements. Polym: Int J Sci Technol Polym. 2016;90:111-121. https://doi.org/10.1016/j.polymer.2016.03.014
Zhao ZG, Yang Q, Xiang Z. Effect of in situ poly(ethylene terephthalate) (PET) microfibrils on the morphological structure and crystallization behavior of isotactic polypropylene (iPP) under an intensive shear rate. Polym Adv Technol. 2015;26:1275-1284. https://doi.org/10.1002/pat.3565
Sibillano T, Terzi A, De C, Liberato DC. Wide angle X-ray scattering to study the atomic structure of polymeric fibers. Crystals. 2020;10:274-287. https://doi.org/10.3390/cryst10040274
Marmur A. Soft contact: measurement and interpretation of contact angles. Soft Matter. 2006;2:12-17. https://doi.org/10.1039/B514811C
Guo JQ, Fang WW, Welle A, Feng WQ. Superhydrophobic and slippery lubricant-infused flexible transparent nanocellulose films by photo-induced thiolene functionalization. ACS Appl Mater Interfaces. 2016;8:34115-34122. https://doi.org/10.1021/acsami.6b11741
Courtney JM, Lamba NMK, Sundaram S, Forbes CD. Biomaterials for blood-contacting applications. Biomaterials. 1994;15:737-744. https://doi.org/10.1016/0142-9612(94)90026-4
Li ZQ, Zhao XW, Ye Y. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. J Biomater Appl. 2014;28:978-989. https://doi.org/10.1177/0885328213490047
Xue J, Zhao W, Nie S. Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. Carbohydr Polym. 2013;95:64-71. https://doi.org/10.1016/j.carbpol.2013.02.033
Semenov AN, Lugovtsov AE, Shirshin EA. Assessment of fibrinogen macromolecules interaction with red blood cells membrane by means of laser Aggregometry, flow cytometry, and optical tweezers combined with microfluidics. Biomolecules. 2020;10:1448-1467. https://doi.org/10.3390/biom10101448
Wu F, Zheng JQ, Li ZX. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation. Chem Eng J. 2019;359:672-683. https://doi.org/10.1016/j.cej.2018.11.145
Li ZQ, Ye L, Zhao XL. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure. J Biomed Mater Res A. 2016;104:1082-1089. https://doi.org/10.1002/jbm.a.35640
Koupenova M, Clancy L, Corkrey HA. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res: J Am Heart Assoc. 2018;122:337-351. https://doi.org/10.1161/CIRCRESAHA.117.310795
Ball M, Grant DM, Lo WJ. The effect of different surface morphology and roughness on osteoblast-like cells. J Biomed Mater Res A. 2008;86:637-647. https://doi.org/10.1002/jbm.a.31652
ASTM F756-17. Standard Practice for Assessment of Hemolytic Properties of Materials. PA, United States: ASTM International; 2017.
Nie N, Tu Q, Wang JC. Synthesis of copolymers using dendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesion activity. Colloids Surf B Biointerfaces. 2012;97:226-235. https://doi.org/10.1016/j.colsurfb.2012.04.012
Han J, Park JO, Park S. Development of active controllable tumor targeting bacteriobot. Microbiorobotics (Second Ed). 2017;3:39-60. https://doi.org/10.1016/B978-0-32-342993-1.00009-4
Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N. Modification of poly sulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials. 1999;20:1553-1559. https://doi.org/10.1016/S0142-9612(98)00206-3
Lahav J, Schwartz AM, Hynes RO. Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: interaction of thrombospondin with fibronectin and collagen. Cell. 1982;31:253-262. https://doi.org/10.1016/0092-8674(82)90425-1