Prior ensemble learning : Theory and application to MR image priors.
Compressed sensing
Image prior distribution
Machine learning
Parallel MR imaging
Journal
International journal of computer assisted radiology and surgery
ISSN: 1861-6429
Titre abrégé: Int J Comput Assist Radiol Surg
Pays: Germany
ID NLM: 101499225
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
07
04
2021
accepted:
27
09
2021
pubmed:
16
10
2021
medline:
17
11
2021
entrez:
15
10
2021
Statut:
ppublish
Résumé
Compressed sensing (CS) reduces the measurement time of magnetic resonance (MR) imaging, where the use of regularizers or image priors are key techniques to boost reconstruction precision. The optimal prior generally depends on the subject and the hand-building of priors is hard. A methodology of combining priors to create a better one would be useful for various forms of image processing that use image priors. We propose a theory, called prior ensemble learning (PEL), which combines many weak priors (not limited to images) efficiently and approximates the posterior mean (PM) estimate, which is Bayes optimal for minimizing the mean squared error (MSE). The way of combining priors is changed from that of an exponential family to a mixture family. We applied PEL to an undersampled (10%) multicoil MR image reconstruction task. We demonstrated that PEL could combine 136 image priors (norm-based priors such as total variation (TV) and wavelets with various regularization coefficient (RC) values) from only two training samples and that it was superior to the CS-SENSE-based method in terms of the MSE of the reconstructed image. The resulting combining weights were sparse (18% of the weak priors remained), as expected. By the theory, the PM estimator was decomposed into the sparse weighted sum of each weak prior's PM estimator, and the exponential computational complexity for RCs was reduced to polynomial order w.r.t. the number of weak priors. PEL is feasible and effective for a practical MR image reconstruction task.
Identifiants
pubmed: 34652607
doi: 10.1007/s11548-021-02512-z
pii: 10.1007/s11548-021-02512-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1937-1945Subventions
Organisme : Japan Society for the Promotion of Science
ID : 25120009
Organisme : Japan Society for the Promotion of Science
ID : 25120002
Organisme : Japan Society for the Promotion of Science
ID : 18K18453
Informations de copyright
© 2021. CARS.
Références
Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60:259–268. https://doi.org/10.1016/0167-2789(92)90242-F
doi: 10.1016/0167-2789(92)90242-F
Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54:4311–4322. https://doi.org/10.1109/TSP.2006.881199
doi: 10.1109/TSP.2006.881199
Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. https://doi.org/10.1007/BF00058655
doi: 10.1007/BF00058655
Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3:79–87. https://doi.org/10.1162/neco.1991.3.1.79
doi: 10.1162/neco.1991.3.1.79
pubmed: 31141872
Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195. https://doi.org/10.1002/mrm.21391
doi: 10.1002/mrm.21391
pubmed: 17969013
Liang D, Liu B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62:1574–1584. https://doi.org/10.1002/mrm.22161
doi: 10.1002/mrm.22161
pubmed: 19785017
Huang J, Zhang S, Metaxas D (2011) Efficient MR image reconstruction for compressed MR imaging. Med Image Anal 15:670–679. https://doi.org/10.1016/j.media.2011.06.001
doi: 10.1016/j.media.2011.06.001
pubmed: 21742542
Jiang M, Jin J, Liu F, Yu Y, Xia L, Wang Y, Crozier S (2013) Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm. Magn Reson Imaging 31:1218–1227. https://doi.org/10.1016/j.mri.2012.12.003
doi: 10.1016/j.mri.2012.12.003
pubmed: 23684962
Kubota N, Harada K, Fujimoto K, Okada T, Inoue M (2019) MR image reconstruction by approximation of posterior mean solution using constrained ensemble learning. In: Proc. 38th JAMIT annu. meeting (JAMIT 2019) Nara, Japan, pp 70–78 (in Japanese). http://jamit2019.jamit.jp/dl/jamit2019_proceedings.pdf
Amari S, Nagaoka H (2000) Methods of information geometry. American Mathematical Society, Oxford University Press
Candés EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509. https://doi.org/10.1109/TIT.2005.862083
doi: 10.1109/TIT.2005.862083
Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306. https://doi.org/10.1109/TIT.2006.871582
doi: 10.1109/TIT.2006.871582
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962. https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952:AID-MRM16>3.0.CO;2-S
Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46:638–651. https://doi.org/10.1002/mrm.1241
doi: 10.1002/mrm.1241
pubmed: 11590639
Liu B, Zou YM, Ying L (2008) Sparsesense: application of compressed sensing in parallel MRI. In: Proc. 2008 int. conf. ITAB, Shenzhen, China, pp 127–130. https://doi.org/10.1109/ITAB.2008.4570588
Song J, Liao Z (2016) A new fast and parallel MRI framework based on contourlet and compressed sensing sensitivity encoding (CS-SENSE). In: Proc. 2016 int. conf. machine learning and cybernetics (ICMLC), Jeju, Korea, pp 750–755. https://doi.org/10.1109/ICMLC.2016.7872981
Harada K, Inoue M, Togashi K (2015) Validation of hybrid prior model for rapid MR imaging —TV prior and wavelet prior—. IEICE Tech Rep 115(225) IBISML2015-51:171–175 (in Japanese). https://www.ieice.org/ken/paper/20150915rbCt/eng/
Kasahara Y, Inoue M, Togashi K (2016) An ensemble learning for MR image reconstruction. IEICE Tech Rep 116(300) IBISML2016-58:87–91 (in Japanese). https://www.ieice.org/ken/paper/20161116ObN3/eng/
Harada K, Inoue M, Togashi K (2017) Posterior mean approximate estimate considering uncertainty of sensitivity map in CS-SENSE. IEICE Tech Rep 117(211) IBISML2017-21:75–82 (in Japanese). https://www.ieice.org/ken/paper/20170915tbXa/eng/
Harada K, Inoue M, Togashi K (2017) Regularization of learning parameters in posterior mean estimate approximation in CS-SENSE method. IEICE Tech Rep 117(293) IBISML2017-52:131–138 (in Japanese). https://www.ieice.org/ken/paper/20171109MbZM/eng/
Kubota N, Harada K, Fujimoto K, Okada T, Inoue M (2018) Posterior mean approximation solution combining multiple image prior distributions in MR image reconstruction. IEICE Tech Rep 118(284) IBISML2018-47:23–28 (in Japanese). https://www.ieice.org/ken/paper/20181105w16Q/eng/
Huang J, Zhang S, Li H, Metaxas D (2011) Composite splitting algorithms for convex optimization. Comput Vis Image Underst 115:1610–1622. https://doi.org/10.1016/j.cviu.2011.06.011
doi: 10.1016/j.cviu.2011.06.011
Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202. https://doi.org/10.1137/080716542
doi: 10.1137/080716542
Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18:2419–2434. https://doi.org/10.1109/TIP.2009.2028250
doi: 10.1109/TIP.2009.2028250
pubmed: 19635705
Dunbar D, Humphreys G (2006) A spatial data structure for fast Poisson-disk sample generation. ACM Trans Graph 25:503–508. https://doi.org/10.1145/1141911.1141915
doi: 10.1145/1141911.1141915
Lustig M, Pauly JM (2010) SPIRiT: iterative self-consistent parallel imaging reconstruction form arbitrary k-space. Magn Reson Med 64:457–471. https://doi.org/10.1002/mrm.22428
doi: 10.1002/mrm.22428
pubmed: 20665790
pmcid: 2925465
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861
doi: 10.1109/TIP.2003.819861
pubmed: 15376593
Akasaka T, Fujimoto K, Yamamoto T, Okada T, Fushimi Y, Yamamoto A, Tanaka T, Togashi K (2016) Optimization of regularization parameters in compressed sensing of magnetic resonance angiography: can statistical image metrics mimic radiologists’ perception? PLoS One 11:e0146548. https://doi.org/10.1371/journal.pone.0146548
Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J. Mach Learning Res 1:211–244. https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
Liang D, Cheng J, Ke Z, Ying L (2020) Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag 37:141–151. https://doi.org/10.1109/MSP.2019.2950557
doi: 10.1109/MSP.2019.2950557
pubmed: 33746470
pmcid: 7977031