Role of the major determinant of polar flagellation FlhG in the endoflagella-containing spirochete Leptospira.
Bacterial Proteins
/ genetics
Cryoelectron Microscopy
Flagella
/ genetics
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genetic Complementation Test
Humans
Leptospira
/ cytology
Leptospirosis
/ microbiology
Monomeric GTP-Binding Proteins
/ genetics
Mutation
Spirochaetales
/ genetics
Virulence
Leptospira
FlhG
endoflagellum
motility
spirochetes
Journal
Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
06
10
2021
received:
20
07
2021
accepted:
13
10
2021
pubmed:
18
10
2021
medline:
27
1
2022
entrez:
17
10
2021
Statut:
ppublish
Résumé
Spirochetes can be distinguished from other bacteria by their spiral-shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG
Substances chimiques
Bacterial Proteins
0
flhF protein, Bacteria
148970-49-4
Monomeric GTP-Binding Proteins
EC 3.6.5.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1392-1406Subventions
Organisme : NIAID NIH HHS
ID : R01 AI065539
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI087946
Pays : United States
Organisme : National Institute of Allergy and Infectious Diseases
ID : R01AI087946
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Agulleiro, J.I. & Fernandez, J.J. (2015) Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction. Journal of Structural Biology, 189, 147-152.
Altegoer, F., Schuhmacher, J., Pausch, P. & Bange, G. (2014) From molecular evolution to biobricks and synthetic modules: A lesson by the bacterial flagellum. Biotechnology and Genetic Engineering Reviews, 30, 49-64.
Arroyo-Pérez, E.E. & Ringgaard, S. (2021) Interdependent polar localization of FlhF and FlhG and their importance for flagellum formation of vibrio parahaemolyticus. Frontiers in Microbiology, 12, 655239.
Balaban, M. & Hendrixson, D.R. (2011) Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Path, 7, e1002420. https://doi.org/10.1371/journal.ppat.1002420
Balaban, M., Joslin, S.N. & Hendrixson, D.R. (2009) FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni. Journal of Bacteriology, 191, 6602-6611.
Bange, G., Kümmerer, N., Grudnik, P., Lindner, R., Petzold, G. & Kressler, D. (2011) Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nature Structural & Molecular Biology, 18, 1376-1380.
Bange, G., Petzold, G., Wild, K., Parlitz, R.O. & Sinning, I. (2007) The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13621-13625. https://doi.org/10.1073/pnas.0702570104
Beeby, M., Ribardo, D.A., Brennan, C.A., Ruby, E.G., Jensen, G.J. & Hendrixson, D.R. (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proceedings of the National Academy of Sciences of the United States of America, 113(13), E1917-E1926. https://doi.org/10.1073/pnas.1518952113
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate - A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289-300.
Carpenter, P.B., Hanlon, D.W. & Ordal, G.W. (1992) flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Molecular Microbiology, 6, 2705-2713.
Charon, N.W., Cockburn, A., Li, C., Liu, J., Miller, K.A., Miller, M.R. et al (2012) The unique paradigm of spirochete motility and chemotaxis. Annual Review of Microbiology, 66, 349-370.
Charon, N.W. & Goldstein, S.F. (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annual Review of Genetics, 36, 47-73. https://doi.org/10.1146/annurev.genet.36.041602.134359
Charon, N.W., Goldstein, S.F., Block, S.M., Curci, K., Ruby, J.D., Kreiling, J.A. et al (1992) Morphology and dynamics of protruding spirochete periplasmic flagella. Journal of Bacteriology, 174, 832-840. https://doi.org/10.1128/jb.174.3.832-840.1992
Correa, N.E., Peng, F. & Klose, K.E. (2005) Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. Journal of Bacteriology, 187, 6324-6332.
Dasgupta, N. & Ramphal, R. (2001) Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. Journal of Bacteriology, 183, 6636-6644.
Edgar, R., Domrachev, M. & Lash, A.E. (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30, 207-210. https://doi.org/10.1093/nar/30.1.207
Fontana, C., Lambert, A., Benaroudj, N., Gasparini, D., Gorgette, O., Cachet, N. et al (2016) Analysis of a spontaneous non-motile and avirulent mutant shows that FliM is Required for full endoflagella assembly in Leptospira interrogan. PLoS One, 11, e0152916.
Gao, T., Shi, M., Ju, L. & Ga, H. (2015) Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in Shewanella oneidensis. Molecular Microbiology, 98, 571-585.
Gibson, K.H., Trajtenberg, F., Wunder, E.A., Brady, M.R., San Martin, F., Mechaly, A. et al (2020) An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. Elife, 9, e53672.
Green, J.C., Kahramanoglou, C., Rahman, A., Pender, A., Charbonnel, N. & Fraser, G. (2009) Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. Journal of Molecular Biology, 391, 679-690. https://doi.org/10.1016/j.jmb.2009.05.075
Gulbronson, C.R., Ribardo, D.A., Balaban, M., Knauer, C., Bange, G. & Hendrixson, D.R. (2016) FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Molecular Microbiology, 99, 291-306.
Holzapfel, M., Bonhomme, D., Cagliero, J., Vernel-Pauillac, F., Fanton d'Andon, M., Bortolussi, S. et al (2020) Escape of TLR5 Recognition by Leptospira spp.: A Rationale for Atypical Endoflagella. Frontiers in Immunology, 11, 2007.
Kaiser, G.E. & Doetsch, R.N. (1975) Enhanced translational motion of Leptospira in viscous environments. Nature, 255, 656-657.
Kazmierczak, B.I. & Hendrixson, D.R. (2013) Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Molecular Microbiology, 88, 655-663.
Kondo, S., Imura, Y., Mizuno, A., Homma, M. & Kojima, S. (2018) Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio. Scientific Reports, 8, 12115.
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996) Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology, 116, 71-76.
Kumar, B. & Cardona, S.T. (2016) Synthetic cystic fibrosis sputum medium regulates flagellar biosynthesis through the flhF Gene in Burkholderia cenocepacia. Frontiers in Cellular and Infection Microbiology, 6, 65.
Kusumoto, A., Kamisaka, K., Yakushi, T., Terashima, H., Shinohara, A. & Homma, M. (2006) Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. Journal of Biochemistry, 139, 113-121.
Lambert, A., Picardeau, M., Haake, D.A., Sermswan, R.W., Srikram, A., Adler, B. et al (2012) FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infection and Immunity, 80, 2019-2025. https://doi.org/10.1128/IAI.00131-12
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25. https://doi.org/10.1186/gb-2009-10-3-r25
Leipe, D.D., Wolf, Y.I., Koonin, E.V. & Aravind, L. (2002) Classification and evolution of P-loop GTPases and related ATPases. Journal of Molecular Biology, 317, 41-72.
Li, C., Xu, H., Zhang, K. & Liang, F.T. (2010) Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Molecular Microbiology, 75, 1563-1576.
Liao, Y., Smyth, G.K. & Shi, W. (2014) featureCounts: An efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923-930. https://doi.org/10.1093/bioinformatics/btt656
Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550. https://doi.org/10.1186/s13059-014-0550-8
Lybecker, M.C., Abel, C.A., Feig, A.L. & Samuels, D.S. (2010) Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Molecular Microbiology, 78, 622-635.
Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet Journal, 17, 10-12.
Mastronarde, D.N. (2005) Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology, 152, 36-51.
Miller, M.R., Miller, K.A., Bian, J., James, M.E., Zhang, S., Lynch, M.J. et al (2016) Spirochaete flagella hook proteins self-catalyse a lysinoalanine covalent crosslink for motility. Nature Microbiology, 1, 16134.
Motaleb, M.A., Corum, L., Bono, J.L., Elias, A.F., Rosa, P., Samuels, D.S. et al (2000) Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proceedings of the National Academy of Sciences of the United States of America, 97, 10899-10904. https://doi.org/10.1073/pnas.200221797
Murray, G.L., Morel, V., Cerqueira, G.M., Croda, J., Srikram, A., Henry, R. et al (2009) Genome-wide transposon mutagenesis in pathogenic Leptospira spp. Infection and Immunity, 77, 810-816.
Murray, T.S. & Kazmierczak, B.I. (2006) FlhF Is Required for swimming and swarming in Pseudomonas aeruginosa. Journal of Bacteriology, 188, 6995-7004.
Navarrete, B., Leal-Morales, A., Serrano-Ron, L., Sarrió, M., Jiménez-Fernández, A., Jiménez-Díaz, L. et al (2019) Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida. PLoS One, 14, e0214166. https://doi.org/10.1371/journal.pone.0214166
Pandza, S., Baetens, M., Park, C.H., Au, T., Keyhan, M. & Matin, A. (2000) The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Molecular Microbiology, 36, 414-423.
Pappas, C.J., Benaroudj, N. & Picardeau, M. (2015) A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains. Applied and Environment Microbiology, 81, 3176-3781.
Picardeau, M. (2008) Conjugative transfer between Escherichia coli and Leptospira spp. as a new genetic tool. Applied and Environment Microbiology, 74, 319-322.
Picardeau, M. (2017) Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nature Reviews Microbiology, 15, 297-307.
Picardeau, M., Brenot, A. & Saint Girons, I. (2001) First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Molecular Microbiology, 40, 189-199. https://doi.org/10.1046/j.1365-2958.2001.02374.x
Prouty, M.G., Correa, N.E. & Klose, K.E. (2001) The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Molecular Microbiology, 39, 1595-1609.
Raddi, G., Morado, D.R., Yan, J., Haake, D.A., Yang, X.F. & Liu, J. (2012) Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. Journal of Bacteriology, 194, 1299-1306. https://doi.org/10.1128/JB.06474-11
Rossmann, F., Brenzinger, S., Knauer, C., Dörrich, A.K., Bubendorfer, S., Ruppert, U. et al (2015) The role of FlhF and HubP as polar landmark proteins in Shewanella putrefaciens CN-32. Molecular Microbiology, 98, 727-742.
Salvetti, S., Ghelardi, E., Celandroni, F., Ceragioli, M., Giannessi, F. & Senesi, S. (2007) FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus. Microbiology (Reading), 153, 2541-2552. https://doi.org/10.1099/mic.0.2006/005553-0
Schuhmacher, J.S., Rossmann, F., Dempwolff, F., Knauer, C., Altegoer, F., Steinchen, W. et al (2015) MinD-like ATPase FlhG effects location and number of bacterial flagella during C-ring assembly. Proceedings of the National Academy of Sciences of the United States of America, 112, 3092-3097.
Schuhmacher, J.S., Thormann, K.M. & Bange, G. (2015) How bacteria maintan location and number of flagella? FEMS Microbiology Reviews, 39, 812-822.
Shen, Y., Chern, M., Silva, F. & Ronald, P. (2001) Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF. Molecular Plant-Microbe Interactions, 14, 204-213.
Slamti, L. & Picardeau, M. (2012) Construction of a library of random mutants in the spirochete Leptospira biflexa using a mariner transposon. In: Bigot, Y. (Ed.) Mobile genetic elements. Humana Press, pp. 169-176.
Sommerlad, S.M. & Hendrixson, D.R. (2007) Analysis of the roles of FlgP and FlgQ in flagellar motility of Campylobacter jejuni. Journal of Bacteriology, 189, 179-186.
Sultan, S.Z., Sekar, P., Zhao, X., Manne, A., Liu, J., Wooten, R.M. et al (2015) Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Infection and Immunity, 83, 1765-1777. https://doi.org/10.1128/IAI.03097-14
Szeto, T.H., Rowland, S.L., Habrukowich, C.L. & King, G.F. (2003) The MinD membrane targeting sequence is a transplantable lipid-binding helix. Journal of Biological Chemistry, 278, 40050-40056.
Tahara, H., Takabe, K., Sasaki, Y., Kasuga, K., Kawamoto, A., Koizumi, N. et al (2018) The mechanism of two-phase motility in the spirochete Leptospira: swimming and crawling. Science Advances, 4, eaar7975.
Takabe, K., Kawamoto, A., Tahara, H., Kudo, S. & Nakamura, S. (2017) Implications of coordinated cell-body rotations for Leptospira motility. Biochemical and Biophysical Research Communications, 491, 1040-1046.
Takabe, K., Nakamura, S., Ashihara, M. & Kudo, S. (2013) Effect of osmolarity and viscosity on the motility of pathogenic and saprophytic Leptospira. Microbiology and Immunology, 57, 236-239.
Tatusov, R.L., Koonin, E.V. & Lipman, D.J. (1997) A genomic perspective on protein families. Science, 278, 631-637. https://doi.org/10.1126/science.278.5338.631
Team, R.C. (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing.
van Amsterdam, K., & van der Ende, A. (2004) Helicobacter pylori HP1034 (ylxH) is required for motility. Helicobacter, 9, 387-395.
Wunder, E.A.J., Slamti, L., Suwondo, D.N., Gibson, K.H., Shang, Z., Sindelar, C.V. et al (2018) FcpB is a surface filament protein of the endoflagellum required for the motility of the spirochete Leptospira. Frontiers in Cellular and Infection Microbiology, 8, 130.
WunderJr, E.A., Figueira, C.P., Benaroudj, N., Hu, B.Y., Tong, B.A., Trajtenberg, F. et al (2016) A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the Leptospira spirochete. Molecular Microbiology, 101, 457-470.
Zhang, K., He, J., Cantalano, C., Guo, Y., Liu, J. & Li, C. (2020) FlhF regulates the number and configuration of periplasmic flagella in Borrelia burgdorferi. Molecular Microbiology, 113, 1122-1139.
Zhao, X., Norris, S.J. & Liu, J. (2014) Molecular architecture of the bacterial flagellar motor in cells. Biochemistry, 53, 4323-4333. https://doi.org/10.1021/bi500059y
Zhao, X., Zhang, K., Boquoi, T., Hu, B., Motaleb, M.A., Miller, K.A. et al (2013) Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proceedings of the National Academy of Sciences of the United States of America, 110, 14390-14395.
Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y. & Agard, D.A. (2017) MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nature Methods, 14, 331-332.
Zhou, H. & Lutkenhaus, J. (2003) Membrane binding by MinD involves insertion of hy-drophobic residues within the C-terminal amphipathic helix into the bilayer. Journal of Bacteriology, 185, 4326-4335.