Variability in environmental persistence but not per capita transmission rates of the amphibian chytrid fungus leads to differences in host infection prevalence.

Batrachochytrium dendrobatidis Osteopilus septentrionalis amphibians host-pathogen dynamics pathogen decomposition pathogen mortality transmission

Journal

The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574

Informations de publication

Date de publication:
01 2022
Historique:
received: 12 04 2021
accepted: 27 09 2021
pubmed: 21 10 2021
medline: 19 3 2022
entrez: 20 10 2021
Statut: ppublish

Résumé

Heterogeneities in infections among host populations may arise through differences in environmental conditions through two mechanisms. First, environmental conditions may alter host exposure to pathogens via effects on survival. Second, environmental conditions may alter host susceptibility, making infection more or less likely if contact between a host and pathogen occurs. Further, host susceptibility might be altered through acquired resistance, which hosts can develop, in some systems, through exposure to dead or decaying pathogens and their metabolites. Environmental conditions may alter the rates of pathogen decomposition, influencing the likelihood of hosts developing acquired resistance. The present study primarily tests how environmental context influences the relative contributions of pathogen survival and per capita transmission on host infection prevalence using the amphibian chytrid fungus (Batrachochytrium dendrobatidis; Bd) as a model system. Secondarily, we evaluate how environmental context influences the decomposition of Bd because previous studies have shown that dead Bd and its metabolites can illicit acquired resistance in hosts. We conducted Bd survival and infection experiments and then fit models to discern how Bd mortality, decomposition and per capita transmission rates vary among water sources [e.g. artificial spring water (ASW) or water from three ponds]. We found that infection prevalence differed among water sources, which was driven by differences in mortality rates of Bd, rather than differences in per capita transmission rates. Bd mortality rates varied among pond water treatments and were lower in ASW compared to pond water. These results suggest that variation in Bd infection dynamics could be a function of environmental factors in waterbodies that result in differences in exposure of hosts to live Bd. In contrast to the persistence of live Bd, we found that the rates of decomposition of dead Bd did not vary among water sources, which may suggest that exposure of hosts to dead Bd or its metabolites might not commonly vary among nearby sites. Ultimately, a mechanistic understanding of the environmental dependence of free-living pathogens could lead to a deeper understanding of the patterns of outbreak heterogeneity, which could inform surveillance and management strategies.

Identifiants

pubmed: 34668575
doi: 10.1111/1365-2656.13612
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

170-181

Subventions

Organisme : NIH HHS
ID : 1R01GM135935-01
Pays : United States
Organisme : NIH HHS
ID : R01TW010286
Pays : United States
Organisme : NIH HHS
ID : KK2022
Pays : United States

Informations de copyright

© 2021 British Ecological Society.

Références

Allen, L. J. S. (2010). An introduction to stochastic processes with applications to biology. Chapman and Hall/CRC.
Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike’s Information Criterion. The Journal of Wildlife Management, 74, 1175-1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x
Barnett, K. M., & Civitello, D. J. (2020). Ecological and evolutionary challenges for wildlife vaccination. Trends in Parasitology, 36, 970-978. https://doi.org/10.1016/j.pt.2020.08.006
Barnett, K. M., Detmering, S. E., McMahon, T. A., & Civitello, D. J. (2021). Asymmetric cross-strain protection for amphibians exposed to a fungal-metabolite prophylactic treatment. Biology Letters, 17, 20210207. https://doi.org/10.1098/rsbl.2021.0207
Becker, C. G., & Zamudio, K. R. (2011). Tropical amphibian populations experience higher disease risk in natural habitats. Proceedings of the National Academy of Sciences of the United States of America, 108, 9893-9898. https://doi.org/10.1073/pnas.1014497108
Berger, L., Hyatt, A. D., Speare, R., & Longcore, J. E. (2005). Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 68, 51-63. https://doi.org/10.3354/dao068051
Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyatt, A. D., McDonald, K. R., Hines, H. B., Lips, K. R., Marantelli, G., & Parkes, H. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America, 95, 9031-9036. https://doi.org/10.1073/pnas.95.15.9031
Bolker, B., & R Development Core Team. (2020). bbmle: Tools for general maximum likelihood estimation. R package version 1.0.23.1. Retrieved from https://CRAN.R-project.org/package=bbmle
Bradley, P. W., Gervasi, S. S., Hua, J., Cothran, R. D., Relyea, R. A., Olson, D. H., & Blaustein, A. R. (2015). Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations. Conservation Biology, 29, 1347-1356.
Brannelly, L. A., McCallum, H. I., Grogan, L. F., Briggs, C. J., Ribas, M. P., Hollanders, M., Sasso, T., López, M. F., Newell, D. A., & Kilpatrick, A. M. (2021). Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecology Letters, 24, 130-148. https://doi.org/10.1111/ele.13621
Briggs, C. J., Knapp, R. A., & Vredenburg, V. T. (2010). Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 107, 9695-9700. https://doi.org/10.1073/pnas.0912886107
Buck, J. C., Truong, L., & Blaustein, A. R. (2011). Predation by zooplankton on Batrachochytrium dendrobatidis: Biological control of the deadly amphibian chytrid fungus? Biodiversity and Conservation, 20, 3549-3553. https://doi.org/10.1007/s10531-011-0147-4
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer.
Chestnut, T., Anderson, C., Popa, R., Blaustein, A. R., Voytek, M., Olson, D. H., & Kirshtein, J. (2014). Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS ONE, 9, e106790. https://doi.org/10.1371/journal.pone.0106790
Civitello, D. J., Forys, P., Johnson, A. P., & Hall, S. R. (2012). Chronic contamination decreases disease spread: A Daphnia-fungus-copper case study. Proceedings of the Royal Society B: Biological Sciences, 279, 3146-3153.
Civitello, D. J., Pearsall, S., Duffy, M. A., & Hall, S. R. (2013). Parasite consumption and host interference can inhibit disease spread in dense populations. Ecology Letters, 16, 626-634. https://doi.org/10.1111/ele.12089
Civitello, D. J., & Rohr, J. R. (2014). Disentangling the effects of exposure and susceptibility on transmission of the zoonotic parasite Schistosoma mansoni. Journal of Animal Ecology, 83, 1379-1386.
Clulow, S., Gould, J., James, H., Stockwell, M., Clulow, J., & Mahony, M. (2018). Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: Implications for translocations. Journal of Applied Ecology, 55, 830-840. https://doi.org/10.1111/1365-2664.13030
Cohen, J. M., Civitello, D. J., Brace, A. J., Feichtinger, E. M., Ortega, C. N., Richardson, J. C., Sauer, E. L., Liu, X., & Rohr, J. R. (2016). Spatial scale modulates the strength of ecological processes driving disease distributions. Proceedings of the National Academy of Sciences of the United States of America, 113, E3359-E3364. https://doi.org/10.1073/pnas.1521657113
Cohen, J. M., Venesky, M. D., Sauer, E. L., Civitello, D. J., McMahon, T. A., Roznik, E. A., & Rohr, J. R. (2017). The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecology Letters, 20, 184-193. https://doi.org/10.1111/ele.12720
Cohen, L. M., Neimark, H., & Eveland, L. K. (1980). Schistosoma mansoni: Response of cercariae to a thermal gradient. The Journal of Parasitology, 66, 362-364. https://doi.org/10.2307/3280843
Cortez, M. H., & Duffy, M. A. (2021). The context-dependent effects of host competence, competition, and pathogen transmission mode on disease prevalence. The American Naturalist, 198, 179-194. https://doi.org/10.1086/715110
Cunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One Health, emerging infectious diseases and wildlife: Two decades of progress? Philosophical Transactions of the Royal Society B, 372, 20160167.
Ellison, A. R., Savage, A. E., DiRenzo, G. V., Langhammer, P., Lips, K. R., & Zamudio, K. R. (2014). Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki. G3, 4, 1275-1289.
Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R., & de la Fuente, J. (2014). Effects of environmental change on zoonotic disease risk: An ecological primer. Trends in Parasitology, 30, 205-214. https://doi.org/10.1016/j.pt.2014.02.003
Favier, C., Schmit, D., Müller-Graf, C. D. M., Cazelles, B., Degallier, N., Mondet, B., & Dubois, M. A. (2005). Influence of spatial heterogeneity on an emerging infectious disease: The case of dengue epidemics. Proceedings of the Royal Society B: Biological Sciences, 272, 1171-1177. https://doi.org/10.1098/rspb.2004.3020
Fincher, G. T. (1973). Dung beetles as biological control agents for gastrointestinal parasites of livestock. The Journal of Parasitology, 59, 396-399. https://doi.org/10.2307/3278842
Fisher, M. C., & Garner, T. W. J. (2020). Chytrid fungi and global amphibian declines. Nature Reviews Microbiology, 18, 332-343. https://doi.org/10.1038/s41579-020-0335-x
Gandon, S., Day, T., Metcalf, C. J. E., & Grenfell, B. T. (2016). Forecasting epidemiological and evolutionary dynamics of infectious diseases. Trends in Ecology & Evolution, 31, 776-788. https://doi.org/10.1016/j.tree.2016.07.010
Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183-190.
Greenspan, S. E., Lyra, M. L., Migliorini, G. H., Kersch-Becker, M. F., Bletz, M. C., Lisboa, C. S., Pontes, M. R., Ribeiro, L. P., Neely, W. J., Rezende, F., Romero, G. Q., Woodhams, D. C., Haddad, C. F. B., Toledo, L. F., & Becker, C. G. (2019). Arthropod-bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proceedings of the Royal Society B: Biological Sciences, 286(1905), 20190924. https://doi.org/10.1098/rspb.2019.0924
Hamilton, P. T., Richardson, J. M. L., & Anholt, B. R. (2012). Daphnia in tadpole mesocosms: Trophic links and interactions with Batrachochytrium dendrobatidis. Freshwater Biology, 57, 676-683. https://doi.org/10.1111/j.1365-2427.2011.02731.x
Heard, G. W., Scroggie, M. P., Clemann, N., & Ramsey, D. S. L. (2014). Wetland characteristics influence disease risk for a threatened amphibian. Ecological Applications, 24, 650-662. https://doi.org/10.1890/13-0389.1
Hyatt, A. D., Boyle, D. G., Olsen, V., Boyle, D. B., Berger, L., Obendorf, D., Dalton, A., Kriger, K., Hero, M., Hines, H., Phillott, R., Campbell, R., Marantelli, G., Gleason, F., & Colling, A. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 73, 175-192. https://doi.org/10.3354/dao073175
James, T. Y., Toledo, L. F., Rödder, D., Leite, D. D. S., Belasen, A. M., Betancourt-Román, C. M., Jenkinson, T. S., Soto-Azat, C., Lambertini, C., Longo, A. V., Ruggeri, J., Collins, J. P., Burrowes, P. A., Lips, K. R., Zamudio, K. R., & Longcore, J. E. (2015). Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: Lessons from the first 15 years of amphibian chytridiomycosis research. Ecology and Evolution, 5, 4079-4097.
Jani, A. J., & Briggs, C. J. (2018). Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Frontiers in Microbiology, 9, 487. https://doi.org/10.3389/fmicb.2018.00487
Johnson, P. T. J., Dobson, A., Lafferty, K. D., Marcogliese, D. J., Memmott, J., Orlofske, S. A., Poulin, R., & Thieltges, D. W. (2010). When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends in Ecology & Evolution, 25, 362-371. https://doi.org/10.1016/j.tree.2010.01.005
Kärvemo, S., Meurling, S., Berger, D., Höglund, J., & Laurila, A. (2018). Effects of host species and environmental factors on the prevalence of Batrachochytrium dendrobatidis in northern Europe. PLoS ONE, 13, e0199852. https://doi.org/10.1371/journal.pone.0199852
Khan, R. A. (1990). Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill. Bulletin of Environmental Contamination and Toxicology, 44, 759-763. https://doi.org/10.1007/BF01701799
Kilpatrick, A. M., Briggs, C. J., & Daszak, P. (2010). The ecology and impact of chytridiomycosis: An emerging disease of amphibians. Trends in Ecology & Evolution, 25, 109-118. https://doi.org/10.1016/j.tree.2009.07.011
Koprivnikar, J., Lim, D., Fu, C., & Brack, S. H. M. (2010). Effects of temperature, salinity, and pH on the survival and activity of marine cercariae. Parasitology Research, 106, 1167-1177. https://doi.org/10.1007/s00436-010-1779-0
Lambertini, C., Becker, C. G., Belasen, A. M., Valencia-Aguilar, A., Nunes-de-Almeida, C. H. L., Betancourt-Román, C. M., Rodriguez, D., da Silva Leite, D., Oliveira, I. S., Gasparini, J. L., Ruggeri, J., Mott, T., Jenkinson, T. S., James, T. Y., Zamudio, K. R., & Toledo, L. F. (2021). Biotic and abiotic determinants of Batrachochytrium dendrobatidis infections in amphibians of the Brazilian Atlantic Forest. Fungal Ecology, 49, 100995. https://doi.org/10.1016/j.funeco.2020.100995
Lei, F., & Poulin, R. (2011). Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Marine Biology, 158, 995-1003. https://doi.org/10.1007/s00227-011-1625-7
Liu, X., Rohr, J. R., & Li, Y. (2013). Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proceedings of the Royal Society B: Biological Sciences, 280, 20122506. https://doi.org/10.1098/rspb.2012.2506
Longo, A. V., & Burrowes, P. A. (2010). Persistence with chytridiomycosis does not assure survival of direct-developing frogs. EcoHealth, 7, 185-195. https://doi.org/10.1007/s10393-010-0327-9
McCallum, H., Fenton, A., Hudson, P. J., Lee, B., Levick, B., Norman, R., Perkins, S. E., Viney, M., Wilson, A. J., & Lello, J. (2017). Breaking beta: Deconstructing the parasite transmission function. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160084. https://doi.org/10.1098/rstb.2016.0084
McMahon, T. A., Brannelly, L. A., Chatfield, M. W. H., Johnson, P. T. J., Joseph, M. B., McKenzie, V. J., Richards-Zawacki, C. L., Venesky, M. D., & Rohr, J. R. (2013). Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proceedings of the National Academy of Sciences of the United States of America, 110, 210-215. https://doi.org/10.1073/pnas.1200592110
McMahon, T. A., & Rohr, J. R. (2014). Trypan blue dye is an effective and inexpensive way to determine the viability of Batrachochytrium dendrobatidis zoospores. EcoHealth, 11, 164-167. https://doi.org/10.1007/s10393-014-0908-0
McMahon, T. A., & Rohr, J. R. (2015). Transition of chytrid fungus infection from mouthparts to hind limbs during amphibian metamorphosis. EcoHealth, 12, 188-193. https://doi.org/10.1007/s10393-014-0989-9
McMahon, T. A., Romansic, J. M., & Rohr, J. R. (2013). Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environmental Science & Technology, 47, 7958-7964.
McMahon, T. A., Sears, B. F., Venesky, M. D., Bessler, S. M., Brown, J. M., Deutsch, K., Halstead, N. T., Lentz, G., Tenouri, N., Young, S., Civitello, D. J., Ortega, N., Fites, J. S., Reinert, L. K., Rollins-Smith, L. A., Raffel, T. R., & Rohr, J. R. (2014). Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 511, 224-227. https://doi.org/10.1038/nature13491
Molnár, P. K., Kutz, S. J., Hoar, B. M., & Dobson, A. P. (2013). Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecology Letters, 16, 9-21. https://doi.org/10.1111/ele.12022
Munster, V. J., Baas, C., Lexmond, P., Waldenström, J., Wallensten, A., Fransson, T., Rimmelzwaan, G. F., Beyer, W. E. P., Schutten, M., Olsen, B., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2007). Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathogens, 3, e61.
Muths, E., Stephen Corn, P., Pessier, A. P., & Earl Green, D. (2003). Evidence for disease-related amphibian decline in Colorado. Biological Conservation, 110, 357-365. https://doi.org/10.1016/S0006-3207(02)00239-2
Ostfeld, R. S., Glass, G. E., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20, 328-336. https://doi.org/10.1016/j.tree.2005.03.009
Padgett-Flohr, G. E., & Hopkins, R. L. (2010). Landscape epidemiology of Batrachochytrium dendrobatidis in central California. Ecography, 33, 688-697. https://doi.org/10.1111/j.1600-0587.2009.05994.x
Pilliod, D. S., Muths, E., Scherer, R. D., Bartelt, P. E., Corn, P. S., Hossack, B. R., Lambert, B. A., Mccaffery, R., & Gaughan, C. (2010). Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads: Toad survival of chytridiomycosis. Conservation Biology, 24, 1259-1267. https://doi.org/10.1111/j.1523-1739.2010.01506.x
Piotrowski, J. S., Annis, S. L., & Longcore, J. E. (2004). Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia, 96, 9-15. https://doi.org/10.2307/3761981
Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P., & Foley, J. E. (2008). Causal inference in disease ecology: Investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment, 6, 420-429. https://doi.org/10.1890/070086
Rachowicz, L. J., & Briggs, C. J. (2007). Quantifying the disease transmission function: Effects of density on Batrachochytrium dendrobatidis transmission in the mountain yellow-legged frog Rana muscosa. Journal of Animal Ecology, 76, 711-721. https://doi.org/10.1111/j.1365-2656.2007.01256.x
Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K., & Rohr, J. R. (2015). Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proceedings of the Royal Society B: Biological Sciences, 282(1801), 20142039. https://doi.org/10.1098/rspb.2014.2039
Raffel, T. R., Michel, P. J., Sites, E. W., & Rohr, J. R. (2010). What drives chytrid infections in newt populations? Associations with substrate, temperature, and shade. EcoHealth, 7, 526-536. https://doi.org/10.1007/s10393-010-0358-2
Rohr, J. R., Brown, J., Battaglin, W. A., McMahon, T. A., & Relyea, R. A. (2017). A pesticide paradox: Fungicides indirectly increase fungal infections. Ecological Applications, 27, 2290-2302. https://doi.org/10.1002/eap.1607
Rohr, J. R., Civitello, D. J., Crumrine, P. W., Halstead, N. T., Miller, A. D., Schotthoefer, A. M., Stenoien, C., Johnson, L. B., & Beasley, V. R. (2015). Predator diversity, intraguild predation, and indirect effects drive parasite transmission. Proceedings of the National Academy of Sciences of the United States of America, 112, 3008-3013. https://doi.org/10.1073/pnas.1415971112
Rohr, J. R., & Raffel, T. R. (2010). Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proceedings of the National Academy of Sciences of the United States of America, 107, 8269-8274. https://doi.org/10.1073/pnas.0912883107
Rohr, J. R., Raffel, T. R., Sessions, S. K., & Hudson, P. J. (2008). Understanding the net effects of pesticides on amphibian trematode infections. Ecological Applications, 18, 1743-1753. https://doi.org/10.1890/07-1429.1
Rohr, J. R., Schotthoefer, A. M., Raffel, T. R., Carrick, H. J., Halstead, N., Hoverman, J. T., Johnson, C. M., Johnson, L. B., Lieske, C., Piwoni, M. D., Schoff, P. K., & Beasley, V. R. (2008). Agrochemicals increase trematode infections in a declining amphibian species. Nature, 455, 1235-1239. https://doi.org/10.1038/nature07281
Rumschlag, S. L., & Boone, M. D. (2020). Amphibian infection risk changes with host life stage and across a landscape gradient. Journal of Herpetology, 54, 347-354. https://doi.org/10.1670/19-107
Rumschlag, S. L., Boone, M. D., & Fellers, G. (2014). The effects of the amphibian chytrid fungus, insecticide exposure, and temperature on larval anuran development and survival. Environmental Toxicology and Chemistry, 33, 2545-2550. https://doi.org/10.1002/etc.2707
Rumschlag, S. L., Halstead, N. T., Hoverman, J. T., Raffel, T. R., Carrick, H. J., Hudson, P. J., & Rohr, J. R. (2019). Effects of pesticides on exposure and susceptibility to parasites can be generalised to pesticide class and type in aquatic communities. Ecology Letters, 22, 962-972. https://doi.org/10.1111/ele.13253
Rumschlag, S. L., & Rohr, J. R. (2018). The influence of pesticide use on amphibian chytrid fungal infections varies with host life stage across broad spatial scales. Global Ecology and Biogeography, 27, 1277-1287. https://doi.org/10.1111/geb.12784
Rumschlag, S. L., Roth, S. A., McMahon, T. A., Rohr, J. R., & Civitello, D. J. (2021). Variability in environmental persistence but not per capita transmission rates of the amphibian chytrid fungus leads to differences in host infection prevalence. Figshare. https://doi.org/10.6084/m9.figshare.16814701.v1
Sauer, E. L., Cohen, J. M., Lajeunesse, M. J., McMahon, T. A., Civitello, D. J., Knutie, S. A., Nguyen, K., Roznik, E. A., Sears, B. F., Bessler, S., Delius, B. K., Halstead, N., Ortega, N., Venesky, M. D., Young, S., & Rohr, J. R. (2020). A meta-analysis reveals temperature, dose, life stage, and taxonomy influence host susceptibility to a fungal parasite. Ecology, 101, e02979.
Savage, A. E., Terrell, K. A., Gratwicke, B., Mattheus, N. M., Augustine, L., & Fleischer, R. C. (2016). Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen. Conservation Physiology, 4, cow011. https://doi.org/10.1093/conphys/cow011
Schmeller, D. S., Blooi, M., Martel, A., Garner, T. W. J., Fisher, M. C., Azemar, F., Clare, F. C., Leclerc, C., Jäger, L., Guevara-Nieto, M., Loyau, A., & Pasmans, F. (2014). Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Current Biology, 24, 176-180. https://doi.org/10.1016/j.cub.2013.11.032
Searle, C. L., Mendelson, J. R., Green, L. E., & Duffy, M. A. (2013). Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles. Ecology and Evolution, 3, 4129-4138.
Stockwell, M. P., Clulow, J., & Mahony, M. J. (2015). Evidence of a salt refuge: Chytrid infection loads are suppressed in hosts exposed to salt. Oecologia, 177, 901-910. https://doi.org/10.1007/s00442-014-3157-6
Strauss, A., & Smith, K. G. (2013). Why does amphibian chytrid (Batrachochytrium dendrobatidis) not occur everywhere? An exploratory study in Missouri ponds. PLoS ONE, 8, e76035. https://doi.org/10.1371/journal.pone.0076035
Tompkins, D. M., Dunn, A. M., Smith, M. J., & Telfer, S. (2011). Wildlife diseases: From individuals to ecosystems. Journal of Animal Ecology, 80, 19-38. https://doi.org/10.1111/j.1365-2656.2010.01742.x
Venesky, M. D., Liu, X., Sauer, E. L., & Rohr, J. R. (2014). Linking manipulative experiments to field data to test the dilution effect. Journal of Animal Ecology, 83, 557-565. https://doi.org/10.1111/1365-2656.12159
Venesky, M. D., Raffel, T. R., McMahon, T. A., & Rohr, J. R. (2014). Confronting inconsistencies in the amphibian-chytridiomycosis system: Implications for disease management. Biological Reviews, 89, 477-483. https://doi.org/10.1111/brv.12064
Voyles, J., Johnson, L. R., Briggs, C. J., Cashins, S. D., Alford, R. A., Berger, L., Skerratt, L. F., Speare, R., & Rosenblum, E. B. (2012). Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians. Ecology and Evolution, 2, 2241-2249. https://doi.org/10.1002/ece3.334
Wood, M. J., Cosgrove, C. L., Wilkin, T. A., Knowles, S. C. L., Day, K. P., & Sheldon, B. C. (2007). Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus. Molecular Ecology, 16, 3263-3273.

Auteurs

Samantha L Rumschlag (SL)

Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
Department of Integrative Biology, University of South Florida, Tampa, FL, USA.

Sadie A Roth (SA)

Department of Integrative Biology, University of South Florida, Tampa, FL, USA.
Department of Natural Resources Management, Texas Tech University, Lubbock, TX, USA.

Taegan A McMahon (TA)

Department of Biology, University of Tampa, Tampa, FL, USA.
Department of Biology, Connecticut College, New London, CT, USA.

Jason R Rohr (JR)

Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
Department of Integrative Biology, University of South Florida, Tampa, FL, USA.

David J Civitello (DJ)

Department of Biology, Emory University, Atlanta, GA, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH