Anthracycline-free tumor elimination in mice leads to functional and molecular cardiac recovery from cancer-induced alterations in contrast to long-lasting doxorubicin treatment effects.
Cancer
Cardio-oncology
Heart
Regeneration
Journal
Basic research in cardiology
ISSN: 1435-1803
Titre abrégé: Basic Res Cardiol
Pays: Germany
ID NLM: 0360342
Informations de publication
Date de publication:
20 10 2021
20 10 2021
Historique:
received:
27
04
2021
accepted:
04
10
2021
revised:
30
09
2021
entrez:
20
10
2021
pubmed:
21
10
2021
medline:
14
1
2022
Statut:
epublish
Résumé
Systemic effects of advanced cancer impact on the heart leading to cardiac atrophy and functional impairment. Using a murine melanoma cancer model (B16F10 melanoma cells stably transduced with a Ganciclovir (GCV)-inducible suicide gene), the present study analysed the recovery potential of cancer-induced cardiomyopathy with or without use of doxorubicin (Dox). After Dox-free tumor elimination and recovery for 70 ± 5 days, cancer-induced morphologic, functional, metabolic and molecular changes were largely reversible in mice previously bearing tumors. Moreover, grip strength and cardiac response to angiotensin II-induced high blood pressure were comparable with healthy control mice. In turn, addition of Dox (12 mg/kg BW) to melanoma-bearing mice reduced survival in the acute phase compared to GCV-alone induced recovery, while long-term effects on cardiac morphologic and functional recovery were similar. However, Dox treatment was associated with permanent changes in the cardiac gene expression pattern, especially the circadian rhythm pathway associated with the DNA damage repair system. Thus, the heart can recover from cancer-induced damage after chemotherapy-free tumor elimination. In contrast, treatment with the cardiotoxic drug Dox induces, besides well-known adverse acute effects, long-term subclinical changes in the heart, especially of circadian clock genes. Since the circadian clock is known to impact on cardiac repair mechanisms, these changes may render the heart more sensitive to additional stress during lifetime, which, at least in part, could contribute to late cardiac toxicity.
Identifiants
pubmed: 34669013
doi: 10.1007/s00395-021-00902-7
pii: 10.1007/s00395-021-00902-7
pmc: PMC8528750
doi:
Substances chimiques
Anthracyclines
0
Antibiotics, Antineoplastic
0
Doxorubicin
80168379AG
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
61Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s).
Références
Circulation. 2015 Jun 2;131(22):1981-8
pubmed: 25948538
Cancer Epidemiol Biomarkers Prev. 2014 Jun;23(6):1109-14
pubmed: 24718281
Circulation. 2019 Feb 12;139(7):965-980
pubmed: 30742538
Heart Fail Rev. 2011 Jan;16(1):35-47
pubmed: 20407820
Dis Chest. 1968 Nov;54(5):403-9
pubmed: 5698585
Nat Med. 2012 Nov;18(11):1639-42
pubmed: 23104132
Lipids Health Dis. 2015 Jul 11;14:69
pubmed: 26162894
Int J Toxicol. 2016 May;35(3):317-26
pubmed: 26526549
Card Fail Rev. 2017 Apr;3(1):62-65
pubmed: 28785478
Int J Oncol. 2013 Jun;42(6):2134-40
pubmed: 23589074
Biochim Biophys Acta Mol Cell Res. 2020 Mar;1867(3):118519
pubmed: 31374232
Vet Rec. 1985 Apr 20;116(16):431-6
pubmed: 3923690
Nucleic Acids Res. 2009 Jan;37(1):1-13
pubmed: 19033363
Eur Heart J. 2011 May;32(10):1287-97
pubmed: 20965886
Arch Toxicol. 2020 Jan;94(1):257-271
pubmed: 31768571
EMBO Rep. 2017 Jul;18(7):1199-1212
pubmed: 28536247
Eur J Heart Fail. 2019 Dec;21(12):1515-1525
pubmed: 31321851
Biomarkers. 2019 Jul;24(5):415-422
pubmed: 31050554
Cancer Res. 2011 Mar 1;71(5):1710-20
pubmed: 21163868
J Clin Oncol. 2013 Oct 10;31(29):3673-80
pubmed: 24002505
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):315-9
pubmed: 10618415
Eur Heart J. 2014 Apr;35(14):932-41
pubmed: 23990596
Oncogene. 2002 Mar 28;21(14):2141-53
pubmed: 11948397
Eur J Heart Fail. 2018 Dec;20(12):1721-1731
pubmed: 30191649
Circ Res. 2004 Jul 23;95(2):187-95
pubmed: 15192020
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5472-5477
pubmed: 32086392
Blood Adv. 2020 Oct 27;4(20):5107-5117
pubmed: 33085755
Circ Res. 2017 Jan 20;120(2):267-269
pubmed: 28104766
JACC CardioOncol. 2019 Dec 17;1(2):196-205
pubmed: 34396183
Am J Physiol Heart Circ Physiol. 2012 Aug 15;303(4):H475-85
pubmed: 22707558
Circulation. 2010 Jul 13;122(2):145-55
pubmed: 20585009
Gene Ther. 2011 Aug;18(8):750-64
pubmed: 21412283
JCI Insight. 2017 May 18;2(10):
pubmed: 28515362
J Vis Exp. 2013 Jun 02;(76):
pubmed: 23770643
Eur Heart J. 2019 Mar 7;40(10):798-800
pubmed: 30753420
Br J Pharmacol. 2013 Jul;169(5):1178-88
pubmed: 23578093
Ann Oncol. 2014 May;25(5):947-58
pubmed: 24401927
Cell Stem Cell. 2011 Aug 5;9(2):131-43
pubmed: 21816364
Curr Cardiol Rev. 2011 Nov;7(4):214-20
pubmed: 22758622
Cardiol Rev. 2019 Sep/Oct;27(5):256-259
pubmed: 31008768
Int J Mol Sci. 2019 Jul 12;20(14):
pubmed: 31336922
Herz. 2020 Nov;45(7):632-636
pubmed: 32542459
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10436-41
pubmed: 27582470
Am J Physiol Heart Circ Physiol. 2016 Feb 15;310(4):H466-77
pubmed: 26718971
Cardiovasc Res. 2017 May 1;113(6):598-608
pubmed: 28453725