Emerging Epigenetic Therapies for Brain Tumors.
Brain tumors
Clinical trials
Epigenetic
Mechanisms
Journal
Neuromolecular medicine
ISSN: 1559-1174
Titre abrégé: Neuromolecular Med
Pays: United States
ID NLM: 101135365
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
24
03
2021
accepted:
14
09
2021
pubmed:
23
10
2021
medline:
5
4
2022
entrez:
22
10
2021
Statut:
ppublish
Résumé
Malignant brain tumors are among the most intractable cancers, including malignancies such as glioblastoma, diffuse midline glioma, medulloblastoma, and ependymoma. Unfortunately, treatment options for these brain tumors have been inadequate and complex, leading to poor prognoses and creating a need for new treatment modalities. Aberrant epigenetics define these types of tumors, with underlying changes in DNA methylation, histone modifications, chromatin structure and noncoding RNAs. Epigenetic-targeted therapies are an alternative that have the potential to reverse the epigenetic deregulation underpinning brain malignancies. Various drugs targeting epigenetic regulators have shown promise in preclinical and clinical testing. In this review, we highlight some of the recent emerging epigenetic targeted therapies for brain tumors being evaluated in the discovery phase and in clinical trials.
Identifiants
pubmed: 34677796
doi: 10.1007/s12017-021-08691-x
pii: 10.1007/s12017-021-08691-x
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
41-49Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Alrfaei, B. M., Clark, P., Vemuganti, R., & Kuo, J. S. (2020). MicroRNA miR-100 decreases glioblastoma growth by targeting SMARCA5 and ErbB3 in tumor-initiating cells. Technology in Cancer Research & Treatment, 19, 1533033820960748. https://doi.org/10.1177/1533033820960748
doi: 10.1177/1533033820960748
Alrfaei, B. M., Vemuganti, R., & Kuo, J. S. (2013). microRNA-100 targets SMRT/NCOR2, reduces proliferation, and improves survival in glioblastoma animal models. PLoS ONE, 8(11), e80865. https://doi.org/10.1371/journal.pone.0080865
doi: 10.1371/journal.pone.0080865
pubmed: 24244722
pmcid: 3828259
Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350–355. https://doi.org/10.1038/nature02871
doi: 10.1038/nature02871
pubmed: 15372042
Bharambe, H. S., Joshi, A., Yogi, K., Kazi, S., & Shirsat, N. V. (2020). Restoration of miR-193a expression is tumor-suppressive in MYC amplified Group 3 medulloblastoma. Acta Neuropathologica Communications, 8(1), 70. https://doi.org/10.1186/s40478-020-00942-5
doi: 10.1186/s40478-020-00942-5
pubmed: 32410663
pmcid: 7227220
Borodovsky, A., Salmasi, V., Turcan, S., Fabius, A. W., Baia, G. S., Eberhart, C. G., et al. (2013). 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget, 4(10), 1737–1747. https://doi.org/10.18632/oncotarget.1408
doi: 10.18632/oncotarget.1408
pubmed: 24077805
pmcid: 3858560
Brower, J. V., Clark, P. A., Lyon, W., & Kuo, J. S. (2014). MicroRNAs in cancer: Glioblastoma and glioblastoma cancer stem cells. Neurochemistry International, 77, 68–77. https://doi.org/10.1016/j.neuint.2014.06.002
doi: 10.1016/j.neuint.2014.06.002
pubmed: 24937770
pmcid: 4390175
Cheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., et al. (2019). Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy, 4, 62. https://doi.org/10.1038/s41392-019-0095-0
doi: 10.1038/s41392-019-0095-0
pubmed: 31871779
pmcid: 6915746
Costa, F. F., Bischof, J. M., Vanin, E. F., Lulla, R. R., Wang, M., Sredni, S. T., et al. (2011). Identification of microRNAs as potential prognostic markers in ependymoma. PLoS ONE, 6(10), e25114. https://doi.org/10.1371/journal.pone.0025114
doi: 10.1371/journal.pone.0025114
pubmed: 22053178
pmcid: 3203863
Dambal, S., Shah, M., Mihelich, B., & Nonn, L. (2015). The microRNA-183 cluster: The family that plays together stays together. Nucleic Acids Research, 43(15), 7173–7188. https://doi.org/10.1093/nar/gkv703
doi: 10.1093/nar/gkv703
pubmed: 26170234
pmcid: 4551935
Duchatel, R. J., Jackson, E. R., Alvaro, F., Nixon, B., Hondermarck, H., & Dun, M. D. (2019). Signal transduction in diffuse intrinsic pontine glioma. Proteomics, 19(21–22), e1800479. https://doi.org/10.1002/pmic.201800479
doi: 10.1002/pmic.201800479
pubmed: 31328874
El-Gewely, M. R., Andreassen, M., Walquist, M., Ursvik, A., Knutsen, E., Nystad, M., Coucheron, D. H., Myrmel, K. S., Hennig, R., & Johansen, S. D. (2016). Differentially expressed MicroRNAs in meningiomas Grades I and II suggest shared biomarkers with malignant tumors. Cancers (basel). https://doi.org/10.3390/cancers8030031
doi: 10.3390/cancers8030031
Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews Genetics, 12(12), 861–874. https://doi.org/10.1038/nrg3074
doi: 10.1038/nrg3074
pubmed: 22094949
Furuta, T., Sabit, H., Dong, Y., Miyashita, K., Kinoshita, M., Uchiyama, N., et al. (2017). Biological basis and clinical study of glycogen synthase kinase- 3beta-targeted therapy by drug repositioning for glioblastoma. Oncotarget, 8(14), 22811–22824. https://doi.org/10.18632/oncotarget.15206
doi: 10.18632/oncotarget.15206
pubmed: 28423558
pmcid: 5410264
Galbraith, K., Kumar, A., Abdullah, K. G., Walker, J. M., Adams, S. H., Prior, T., Dimentberg, R., Henderson, F. C., Mirchia, K., Sathe, A. A., Viapiano, M. S., Chin, L. S., Corona, R. J., Hatanpaa, K. J., Snuderl, M., Xing, C., Brem, S., & Richardson, T. E. (2020). Molecular correlates of long survival in IDH-wildtype glioblastoma cohorts. Journal of Neuropathology and Experimental Neurology, 79(8), 843–854. https://doi.org/10.1093/jnen/nlaa059
doi: 10.1093/jnen/nlaa059
pubmed: 32647886
Gartel, A. L., & Kandel, E. S. (2008). miRNAs: Little known mediators of oncogenesis. Seminars in Cancer Biology, 18(2), 103–110. https://doi.org/10.1016/j.semcancer.2008.01.008
doi: 10.1016/j.semcancer.2008.01.008
pubmed: 18295504
Guo, M., Peng, Y., Gao, A., Du, C., & Herman, J. G. (2019). Epigenetic heterogeneity in cancer. Biomark Res, 7, 23. https://doi.org/10.1186/s40364-019-0174-y
doi: 10.1186/s40364-019-0174-y
pubmed: 31695915
pmcid: 6824025
Han, S., Liu, Y., Cai, S. J., Qian, M., Ding, J., Larion, M., Gilbert, M. R., & Yang, C. (2020). IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets. British Journal of Cancer, 122(11), 1580–1589. https://doi.org/10.1038/s41416-020-0814-x
doi: 10.1038/s41416-020-0814-x
pubmed: 32291392
pmcid: 7250901
Kernytsky, A., Wang, F., Hansen, E., Schalm, S., Straley, K., Gliser, C., et al. (2015). IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood, 125(2), 296–303. https://doi.org/10.1182/blood-2013-10-533604
doi: 10.1182/blood-2013-10-533604
pubmed: 25398940
pmcid: 4295919
Kraus, W. L., & Hottiger, M. O. (2013). PARP-1 and gene regulation: Progress and puzzles. Molecular Aspects of Medicine, 34(6), 1109–1123. https://doi.org/10.1016/j.mam.2013.01.005
doi: 10.1016/j.mam.2013.01.005
pubmed: 23357755
Kreth, S., Thon, N., & Kreth, F. W. (2014). Epigenetics in human gliomas. Cancer Letters, 342(2), 185–192. https://doi.org/10.1016/j.canlet.2012.04.008
doi: 10.1016/j.canlet.2012.04.008
pubmed: 22531315
Lee, S. Y. (2016). Temozolomide resistance in glioblastoma multiforme. Genes and Diseases, 3(3), 198–210. https://doi.org/10.1016/j.gendis.2016.04.007
doi: 10.1016/j.gendis.2016.04.007
pubmed: 30258889
pmcid: 6150109
Long, W., Yi, Y., Chen, S., Cao, Q., Zhao, W., & Liu, Q. (2017). Potential new therapies for pediatric diffuse intrinsic pontine glioma. Frontiers in Pharmacology, 8, 495. https://doi.org/10.3389/fphar.2017.00495
doi: 10.3389/fphar.2017.00495
pubmed: 28790919
pmcid: 5525007
Lourdusamy, A., Rahman, R., Smith, S., & Grundy, R. (2015). microRNA network analysis identifies miR-29 cluster as key regulator of LAMA2 in ependymoma. Acta Neuropathologica Communications, 3, 26. https://doi.org/10.1186/s40478-015-0206-2
doi: 10.1186/s40478-015-0206-2
pubmed: 25958202
pmcid: 4425904
Mack, S. C., Hubert, C. G., Miller, T. E., Taylor, M. D., & Rich, J. N. (2016). An epigenetic gateway to brain tumor cell identity. Nature Neuroscience, 19(1), 10–19. https://doi.org/10.1038/nn.4190
doi: 10.1038/nn.4190
pubmed: 26713744
pmcid: 5568053
Mellinghoff, I. K., Ellingson, B. M., Touat, M., Maher, E., De La Fuente, M. I., Holdhoff, M., Cote, G. M., Burris, H., Janku, F., Young, R. J., Huang, R., Jiang, L., Choe, S., Fan, B., Yen, K., Lu, M., Bowden, C., Steelman, L., & Pandya, S. S. (2020). Ivosidenib in isocitrate dehydrogenase 1-mutated advanced glioma. Journal of Clinical Oncology, 38(29), 3398–3406. https://doi.org/10.1200/JCO.19.03327
doi: 10.1200/JCO.19.03327
pubmed: 32530764
pmcid: 7527160
Milde, T., Oehme, I., Korshunov, A., Kopp-Schneider, A., Remke, M., Northcott, P., Deubzer, H. E., Lodrini, M., Taylor, M. D., von Deimling, A., Pfister, S. & Witt, O. (2010). HDAC5 and HDAC9 in medulloblastoma: Novel markers for risk stratification and role in tumor cell growth. Clinical Cancer Research, 16(12), 3240–3252. https://doi.org/10.1158/1078-0432.CCR-10-0395
doi: 10.1158/1078-0432.CCR-10-0395
pubmed: 20413433
Mir, S. E., Smits, M., Biesmans, D., Julsing, M., Bugiani, M., Aronica, E., Kaspers, G. J. L., Cloos, J., Würdinger, T. & Hulleman, E. (2017). Trimethylation of H3K27 during human cerebellar development in relation to medulloblastoma. Oncotarget, 8(45), 78978–78988. https://doi.org/10.18632/oncotarget.20741
doi: 10.18632/oncotarget.20741
pubmed: 29108280
pmcid: 5668013
Mohammad, F., Weissmann, S., Leblanc, B., Pandey, D. P., Hojfeldt, J. W., Comet, I., Zheng, C., Johansen, J. V., Rapin, N., Porse B. T., Tvardovskiy, A., Jensen, O. N., Olaciregui, N. G., Lavarino, C., Suñol, M., Torres, C. D., Mora, J., Carcaboso, A. M., & Helinet, K. (2017). EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nature Medicine, 23(4), 483–492. https://doi.org/10.1038/nm.4293
doi: 10.1038/nm.4293
pubmed: 28263309
Mollashahi, B., Aghamaleki, F. S., & Movafagh, A. (2019). The roles of miRNAs in medulloblastoma: A systematic review. Journal of Cancer Prevention, 24(2), 79–90. https://doi.org/10.15430/JCP.2019.24.2.79
doi: 10.15430/JCP.2019.24.2.79
pubmed: 31360688
pmcid: 6619858
Moller, H. G., Rasmussen, A. P., Andersen, H. H., Johnsen, K. B., Henriksen, M., & Duroux, M. (2013). A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Molecular Neurobiology, 47(1), 131–144. https://doi.org/10.1007/s12035-012-8349-7
doi: 10.1007/s12035-012-8349-7
pubmed: 23054677
Nagarajan, R. P., & Costello, J. F. (2009). Epigenetic mechanisms in glioblastoma multiforme. Seminars in Cancer Biology, 19(3), 188–197. https://doi.org/10.1016/j.semcancer.2009.02.005
doi: 10.1016/j.semcancer.2009.02.005
pubmed: 19429483
Northcott, P. A., Robinson, G. W., Kratz, C. P., Mabbott, D. J., Pomeroy, S. L., Cliford, S. C., Rutkowski, S., Ellison, D. W., Malkin, D., Taylor, M. D., Gajjar, A. & Pfister, S. M. (2019). Medulloblastoma. Nature Reviews. Disease Primers, 5(1), 11. https://doi.org/10.1038/s41572-019-0063-6
doi: 10.1038/s41572-019-0063-6
pubmed: 30765705
O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (lausanne), 9, 402. https://doi.org/10.3389/fendo.2018.00402
doi: 10.3389/fendo.2018.00402
Ostrom, Q. T., Cioi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., Barnholtz-Sloan, J. S. (2019). CBTRUS statistical report: PRIMARY brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncology, 21(Suppl 5), v1–v100. https://doi.org/10.1093/neuonc/noz150
doi: 10.1093/neuonc/noz150
pubmed: 31675094
pmcid: 6823730
Pellegatta, S., Valletta, L., Corbetta, C., Patane, M., Zucca, I., Riccardi Sirtori, F., et al. (2015). Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathologica Communications, 3, 4. https://doi.org/10.1186/s40478-014-0180-0
doi: 10.1186/s40478-014-0180-0
pubmed: 25849072
pmcid: 4359524
Petrescu, G. E. D., Sabo, A. A., Torsin, L. I., Calin, G. A., & Dragomir, M. P. (2019). MicroRNA based theranostics for brain cancer: Basic principles. Journal of Experimental & Clinical Cancer Research, 38(1), 231. https://doi.org/10.1186/s13046-019-1180-5
doi: 10.1186/s13046-019-1180-5
Pyko, I. V., Nakada, M., Sabit, H., Teng, L., Furuyama, N., Hayashi, Y., Kawakami, K., Minamoto, T., Fedulau, A. S. & Hamada, J-I. (2013). Glycogen synthase kinase 3beta inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis, 34(10), 2206–2217. https://doi.org/10.1093/carcin/bgt182
doi: 10.1093/carcin/bgt182
pubmed: 23715499
Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C., Campos, C., Tsoi, Clark, O., Oldrini, B., Komisopoulou, E., Kunii, K., Pedraza, A., Schalm, S., Silverman, L., Miller, A., Wang, F., Yang, H., Chen, Y., Kernytsky, A., Marc, K. R., Liu, W., Biller, S. A., Shinsan M Su, S. M., Cameron W Brennan, C. W., Timothy A Chan, T. A., Graeber, T. G., Yen, K. E. & Mellinghoff I. K. (2013). An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 340(6132), 626–630. https://doi.org/10.1126/science.1236062
doi: 10.1126/science.1236062
pubmed: 23558169
pmcid: 3985613
Romani, M., Pistillo, M. P., & Banelli, B. (2018). Epigenetic targeting of glioblastoma. Frontier Oncologia, 8, 448. https://doi.org/10.3389/fonc.2018.00448
doi: 10.3389/fonc.2018.00448
Saydam, O., Shen, Y., Wurdinger, T., Senol, O., Boke, E., James, M. F., et al. (2009). Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Molecular and Cellular Biology, 29(21), 5923–5940. https://doi.org/10.1128/MCB.00332-09
doi: 10.1128/MCB.00332-09
pubmed: 19703993
pmcid: 2772747
Schumacher, T., Bunse, L., Pusch, S., Sahm, F., Wiestler, B., Quandt, J., Menn, O., Osswald, M., Oezen, I., Ott, M., Keil, M., Balß, J., Rauschenbach, K., Grabowska, A. K., Vogler, I., Diekmann, J., Trautwein, N., Eichmüller, S. B., Okun, J., Stevanović, S., Riemer, A. B., Sahin, U., Friese, M. A., Beckhove, P., von Deimling, A., Wick, W. & Platten, M.(2014). A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 512(7514), 324–327. https://doi.org/10.1038/nature13387
doi: 10.1038/nature13387
pubmed: 25043048
Shenouda, S. K., & Alahari, S. K. (2009). MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer and Metastasis Reviews, 28(3–4), 369–378. https://doi.org/10.1007/s10555-009-9188-5
doi: 10.1007/s10555-009-9188-5
pubmed: 20012925
Silber, J., Hashizume, R., Felix, T., Hariono, S., Yu, M., Berger, M. S., et al. (2013). Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro-Oncology, 15(1), 83–90. https://doi.org/10.1093/neuonc/nos281
doi: 10.1093/neuonc/nos281
pubmed: 23172372
Skalsky, R. L., & Cullen, B. R. (2011). Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS ONE, 6(9), e24248. https://doi.org/10.1371/journal.pone.0024248
doi: 10.1371/journal.pone.0024248
pubmed: 21912681
pmcid: 3166303
Stupp, R., Taillibert, S., Kanner, A., Read, W., Steinberg, D., Lhermitte, B., et al. (2017). Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA, 318(23), 2306–2316. https://doi.org/10.1001/jama.2017.18718
doi: 10.1001/jama.2017.18718
pubmed: 29260225
pmcid: 5820703
Tamimi, A. F., & Juweid, M. (2017). Epidemiology and outcome of glioblastoma. In S. De Vleeschouwer (Ed.), Glioblastoma. Brisbane: Codon Publications.
Taylor, M. D., Northcott, P. A., Korshunov, A., Remke, M., Cho, Y. J., Cliford, S. C., Eberhart, C. G., Parsons, D. W., Rutkowski, S., Gajjar, A., Ellison, D. W., Lichter, P., Gilbertson, R. J., Pomeroy, S. L., Kool, M., & Pfister, S. M. (2012). Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathologica, 123(4), 465–472. https://doi.org/10.1007/s00401-011-0922-z
doi: 10.1007/s00401-011-0922-z
pubmed: 22134537
Turcan, S., Rohle, D., Goenka, A., Walsh, L. A., Fang, F., Yilmaz, E., Campos, C., Fabius, A. W. M., Lu, C., Ward, P. S., Thompson, C. B., Kaufman, A., Guryanova, O., Levine, R., Heguy, A., Viale, A., Morris, L. G. T., Huse, J. T., Mellinghoff, I. K. & Chan, T. A (2012). IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 483(7390), 479–483. https://doi.org/10.1038/nature10866
doi: 10.1038/nature10866
pubmed: 22343889
pmcid: 3351699
van Vuurden, D. G., Hulleman, E., Meijer, O. L., Wedekind, L. E., Kool, M., Witt, H., Vandertop, P. W., Würdinger, T., Noske, D. P., Kaspers, G. J. L. & Cloos, J. (2011). PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget, 2(12), 984–996. https://doi.org/10.18632/oncotarget.362
doi: 10.18632/oncotarget.362
pubmed: 22184287
pmcid: 3282104
Warren, K. E. (2012). Diffuse intrinsic pontine glioma: Poised for progress. Frontiers in Oncology, 2, 205. https://doi.org/10.3389/fonc.2012.00205
doi: 10.3389/fonc.2012.00205
pubmed: 23293772
pmcid: 3531714
Wei, J., Nduom, E. K., Kong, L. Y., Hashimoto, Y., Xu, S., Gabrusiewicz, K., Ling, X., Huang, N., Qiao, W., Zhou, S., Ivan, C., Fuller, G. N., Gilbert, M. R., Overwijk, W., Calin, G. A. & Heimberger, A. B. (2016). MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-Oncology, 18(5), 639–648. https://doi.org/10.1093/neuonc/nov292
doi: 10.1093/neuonc/nov292
pubmed: 26658052
Witthayanuwat, S., Pesee, M., Supaadirek, C., Supakalin, N., Thamronganantasakul, K., & Krusun, S. (2018). Survival Analysis of Glioblastoma Multiforme. Asian Pacific Journal of Cancer Prevention, 19(9), 2613–2617. https://doi.org/10.22034/APJCP.2018.19.9.2613
doi: 10.22034/APJCP.2018.19.9.2613
pubmed: 30256068
pmcid: 6249474
Wu, J., Armstrong, T. S., & Gilbert, M. R. (2016). Biology and management of ependymomas. Neuro-Oncology, 18(7), 902–913. https://doi.org/10.1093/neuonc/now016
doi: 10.1093/neuonc/now016
pubmed: 27022130
pmcid: 4896548
Yang, N. (2015). An overview of viral and nonviral delivery systems for microRNA. International Journal of Pharmaceutical Investigation, 5(4), 179–181. https://doi.org/10.4103/2230-973X.167646
doi: 10.4103/2230-973X.167646
pubmed: 26682187
pmcid: 4674998
Yeh, M., Oh, C. S., Yoo, J. Y., Kaur, B., & Lee, T. J. (2019). Pivotal role of microRNA-138 in human cancers. American Journal of Cancer Research, 9(6), 1118–1126.
pubmed: 31285946
pmcid: 6610051
Zhang, R. R., & Kuo, J. S. (2017). Reduced H3K27me3 is a new epigenetic biomarker for pediatric posterior fossa ependymomas. Neurosurgery, 81(1), N7–N8. https://doi.org/10.1093/neuros/nyx262
doi: 10.1093/neuros/nyx262
pubmed: 28873995