Molecular Basis of IgE-Mediated Shrimp Allergy and Heat Desensitization.


Journal

Nutrients
ISSN: 2072-6643
Titre abrégé: Nutrients
Pays: Switzerland
ID NLM: 101521595

Informations de publication

Date de publication:
27 Sep 2021
Historique:
received: 29 07 2021
revised: 20 09 2021
accepted: 22 09 2021
entrez: 23 10 2021
pubmed: 24 10 2021
medline: 16 11 2021
Statut: epublish

Résumé

Crustacean allergy, especially to shrimp, is the most predominant cause of seafood allergy. However, due to the high flexibility of immunoglobulin E (IgE), its three-dimensional structure remains unsolved, and the molecular mechanism of shrimp allergen recognition is unknown. Here a chimeric IgE was built in silico, and its variable region in the light chain was replaced with sequences derived from shrimp tropomyosin (TM)-allergic patients. A variety of allergenic peptides from the Chinese shrimp TM were built, treated with heating, and subjected to IgE binding in silico. Amino acid analysis shows that the amino acid residue conservation in shrimp TM contributes to eliciting an IgE-mediated immune response. In the shrimp-allergic IgE, Glu98 in the light chain and other critical residues that recognize allergens from shrimp are implicated in the molecular basis of IgE-mediated shrimp allergy. Heat treatment could alter the conformations of TM allergenic peptides, impact their intramolecular hydrogen bonding, and subsequently decrease the binding between these peptides and IgE. We found Glu98 as the characteristic amino acid residue in the light chain of IgE to recognize general shrimp-allergic sequences, and heat-induced conformational change generally desensitizes shrimp allergens.

Identifiants

pubmed: 34684397
pii: nu13103397
doi: 10.3390/nu13103397
pmc: PMC8540294
pii:
doi:

Substances chimiques

Allergens 0
Epitopes 0
Peptide Fragments 0
Recombinant Fusion Proteins 0
Tropomyosin 0
Immunoglobulin E 37341-29-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Key Research and Development Program of China
ID : 2019YFC1605000

Références

Food Funct. 2019 Mar 20;10(3):1609-1618
pubmed: 30820502
Mol Immunol. 2011 Sep;48(15-16):1983-92
pubmed: 21784530
J Immunol. 2003 Jan 1;170(1):445-53
pubmed: 12496430
Biotechnol Adv. 2005 Sep;23(6):423-9
pubmed: 15978770
Eur Ann Allergy Clin Immunol. 2018 Sep;50(5):202-210
pubmed: 29533055
J Allergy Clin Immunol. 1994 Nov;94(5):882-90
pubmed: 7963157
J Exp Biol. 2004 Jul;207(Pt 16):2755-67
pubmed: 15235004
J Allergy Clin Immunol. 2009 Jul;124(1):114-20
pubmed: 19523674
J Allergy Clin Immunol. 1998 Nov;102(5):847-52
pubmed: 9819304
J Food Sci. 2010 Jan-Feb;75(1):T1-5
pubmed: 20492208
Allergy. 2017 Jun;72(6):842-848
pubmed: 28027402
Int J Mol Sci. 2019 Sep 19;20(18):
pubmed: 31546958
J Agric Food Chem. 2007 Feb 7;55(3):985-91
pubmed: 17263503
J Muscle Res Cell Motil. 1998 Feb;19(2):105-15
pubmed: 9536438
Mol Nutr Food Res. 2011 Oct;55(10):1492-8
pubmed: 21656669
J Immunol. 2005 Dec 15;175(12):8354-64
pubmed: 16339577
Structure. 2018 Jul 3;26(7):997-1006.e5
pubmed: 29887498
Int J Biol Macromol. 2020 Dec 1;164:1973-1983
pubmed: 32758611
Front Immunol. 2017 Nov 10;8:1536
pubmed: 29176981
Rapid Commun Mass Spectrom. 2010 Aug 30;24(16):2462-70
pubmed: 20658686
Food Chem. 2021 Feb 1;337:127811
pubmed: 32799155
Cell Mol Immunol. 2017 Mar;14(3):308-318
pubmed: 26364917
Mol Biol Rep. 2014 Oct;41(10):6509-17
pubmed: 24985979
J Allergy Clin Immunol. 1987 Nov;80(5):716-22
pubmed: 3680815
Allergy. 2014 Aug;69(8):992-1007
pubmed: 24816523
Food Chem. 2019 Feb 15;274:789-795
pubmed: 30373009
Mol Nutr Food Res. 2020 May;64(10):e1900496
pubmed: 32243079
Molecules. 2020 Sep 24;25(19):
pubmed: 32987954
Int Arch Allergy Immunol. 2019;180(1):10-16
pubmed: 31234191
Allergy. 2011 Oct;66(10):1375-83
pubmed: 21651567
J Agric Food Chem. 2017 Feb 1;65(4):950-963
pubmed: 28072528
J Allergy Clin Immunol. 2008 Oct;122(4):795-802
pubmed: 18760458
Int Arch Allergy Immunol. 2002 Sep;129(1):38-48
pubmed: 12372997
Mar Biotechnol (NY). 2000 Sep;2(5):499-509
pubmed: 11246417
Structure. 2007 Nov;15(11):1413-21
pubmed: 17997967
Mol Mar Biol Biotechnol. 1998 Mar;7(1):12-20
pubmed: 9597774
Food Chem. 2018 Aug 30;258:359-365
pubmed: 29655746
J Agric Food Chem. 2018 Mar 21;66(11):2944-2953
pubmed: 29481756
Food Chem. 2016 Dec 1;212:313-22
pubmed: 27374538
Food Chem. 2018 Apr 15;245:997-1009
pubmed: 29287471

Auteurs

PeiAo Zhang (P)

College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Jihui Gao (J)

College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Huilian Che (H)

College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Wentong Xue (W)

College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Dong Yang (D)

College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH