Specialized Mechanosensory Epithelial Cells in Mouse Gut Intrinsic Tactile Sensitivity.


Journal

Gastroenterology
ISSN: 1528-0012
Titre abrégé: Gastroenterology
Pays: United States
ID NLM: 0374630

Informations de publication

Date de publication:
02 2022
Historique:
received: 02 06 2021
revised: 30 08 2021
accepted: 12 10 2021
pubmed: 25 10 2021
medline: 23 2 2022
entrez: 24 10 2021
Statut: ppublish

Résumé

The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity. We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents. Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel. The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.

Sections du résumé

BACKGROUND AND AIMS
The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity.
METHODS
We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents.
RESULTS
Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel.
CONCLUSIONS
The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.

Identifiants

pubmed: 34688712
pii: S0016-5085(21)03664-7
doi: 10.1053/j.gastro.2021.10.026
pmc: PMC8792331
mid: NIHMS1761530
pii:
doi:

Substances chimiques

Ion Channels 0
Piezo2 protein, mouse 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

535-547.e13

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK052766
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK123549
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK084567
Pays : United States
Organisme : NIDDK NIH HHS
ID : F99 DK123834
Pays : United States
Organisme : NCCIH NIH HHS
ID : DP2 AT010875
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS118790
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright © 2022 AGA Institute. Published by Elsevier Inc. All rights reserved.

Références

Nature. 2014 May 29;509(7502):622-6
pubmed: 24717433
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3560-4
pubmed: 9108015
Science. 2018 Sep 21;361(6408):
pubmed: 30237325
Br J Nutr. 2013 Apr 28;109(8):1518-27
pubmed: 22863169
J Vis Exp. 2013 Mar 23;(73):e50301
pubmed: 23542813
Nature. 2014 May 29;509(7502):617-21
pubmed: 24717432
Neurogastroenterol Motil. 2016 May;28(5):620-30
pubmed: 26691223
Neuron. 2018 Dec 19;100(6):1401-1413.e6
pubmed: 30415995
Gastroenterology. 2001 Feb;120(2):354-60
pubmed: 11159875
Dig Dis Sci. 1997 Aug;42(8):1613-7
pubmed: 9286225
Sci Rep. 2018 Jul 2;8(1):9975
pubmed: 29967482
Scand J Gastroenterol. 1999 Oct;34(10):1007-11
pubmed: 10563671
Am J Gastroenterol. 2002 Sep;97(9):2315-20
pubmed: 12358250
Diabetes Res Clin Pract. 2006 Oct;74(1):1-7
pubmed: 16730844
Nat Neurosci. 2013 Oct;16(10):1499-508
pubmed: 23995068
J Cell Biol. 2011 Mar 7;192(5):767-80
pubmed: 21383077
Nat Rev Gastroenterol Hepatol. 2013 Aug;10(8):473-86
pubmed: 23797870
Nature. 2015 Sep 10;525(7568):251-5
pubmed: 26287467
Gastroenterology. 2010 Feb;138(2):659-70 670.e1-2
pubmed: 19782081
Science. 1989 Feb 24;243(4894 Pt 1):1068-71
pubmed: 2466333
J Physiol. 2000 Jul 15;526 Pt 2:375-85
pubmed: 10896726
Gastroenterology. 2004 Jul;127(1):166-78
pubmed: 15236183
J Invest Dermatol. 1977 Jul;69(1):41-6
pubmed: 68982
Neurogastroenterol Motil. 2021 Feb;33(2):e13994
pubmed: 33000540
Am J Physiol Gastrointest Liver Physiol. 2010 Jun;298(6):G952-61
pubmed: 20360134
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13525-30
pubmed: 14597720
Gastroenterology. 2017 Jan;152(1):124-133.e2
pubmed: 27746233
Nutrients. 2018 May 28;10(6):
pubmed: 29843428
Interface Focus. 2016 Jun 6;6(3):20160001
pubmed: 27274803
J Clin Invest. 2015 Feb;125(2):782-6
pubmed: 25555217
J Physiol. 2013 Dec 1;591(23):5939-57
pubmed: 24127620
Nat Cell Biol. 2018 Aug;20(8):909-916
pubmed: 30038251
Gastroenterology. 1981 Jun;80(6):1489-96
pubmed: 7227773
Am J Hum Genet. 2014 May 1;94(5):734-44
pubmed: 24726473
Nat Neurosci. 2005 Sep;8(9):1263-8
pubmed: 16116447
Nat Rev Gastroenterol Hepatol. 2020 Jun;17(6):338-351
pubmed: 32152479
Gut. 1997 Feb;40(2):223-7
pubmed: 9071936
Am J Gastroenterol. 2001 May;96(5):1499-506
pubmed: 11374689
J Physiol. 2017 Jan 1;595(1):79-91
pubmed: 27392819
J Physiol. 2015 Aug 1;593(15):3225-7
pubmed: 26228547
Mol Endocrinol. 2015 Nov;29(11):1658-71
pubmed: 26352512
Nature. 2017 Jan 12;541(7636):176-181
pubmed: 28002412
J Physiol. 2015 Aug 1;593(15):3229-31
pubmed: 26228548
Dev Biol. 2008 Jan 1;313(1):58-66
pubmed: 18022152
Gastroenterology. 2009 Apr;136(4):1328-38
pubmed: 19138686
J Physiol. 2011 Mar 1;589(Pt 5):1081-93
pubmed: 21224236
Annu Rev Physiol. 1999;61:45-84
pubmed: 10099682
Gut. 1998 May;42(5):685-9
pubmed: 9659165
Nat Neurosci. 2017 Jan;20(1):24-33
pubmed: 27893727
Nat Biotechnol. 2014 Apr;32(4):381-386
pubmed: 24658644
Cell. 2017 Jun 29;170(1):185-198.e16
pubmed: 28648659
Endocrinology. 2013 Oct;154(10):3552-64
pubmed: 23885020
Genes Dev. 2006 Sep 1;20(17):2465-78
pubmed: 16951258
J Cell Biol. 2015 Feb 2;208(3):367-79
pubmed: 25624394
Life Sci. 1987 Nov 9;41(19):2229-34
pubmed: 2823042
Mol Metab. 2019 Nov;29:158-169
pubmed: 31668387
Dev Biol. 2012 Nov 15;371(2):156-69
pubmed: 22964416
Nature. 2017 Nov 16;551(7680):333-339
pubmed: 29144463
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1925-1930
pubmed: 29432180
Cell Tissue Res. 2015 Sep;361(3):697-710
pubmed: 25813788
Gastroenterology. 1984 Dec;87(6):1255-63
pubmed: 6092195
Z Vitam Horm Fermentforsch. 1957;9(1-2):74-96
pubmed: 13531578
Gastroenterology. 2021 Jun;160(7):2451-2466.e19
pubmed: 33662386
Nat Rev Gastroenterol Hepatol. 2013 Dec;10(12):729-40
pubmed: 24061204
Gastroenterology. 2009 May;136(6):1979-88
pubmed: 19457422
Neurogastroenterol Motil. 2018 Mar 25;:e13333
pubmed: 29575442
Brain Res. 2018 Aug 15;1693(Pt B):197-200
pubmed: 29903622
Eur J Nucl Med. 1999 Dec;26(12):1560-6
pubmed: 10638407
Neuron. 2013 Aug 21;79(4):618-39
pubmed: 23972592
J Auton Nerv Syst. 1991 Jun 1;34(1):69-75
pubmed: 1940018
Am J Physiol. 1995 Dec;269(6 Pt 1):G945-52
pubmed: 8572226
Cell Mol Gastroenterol Hepatol. 2020;10(4):864-867.e5
pubmed: 32464312
Neurogastroenterol Motil. 2020 Dec;32(12):e13989
pubmed: 32986284
Curr Opin Endocrinol Diabetes Obes. 2008 Feb;15(1):73-8
pubmed: 18185066
Best Pract Res Clin Gastroenterol. 2006;20(3):485-505
pubmed: 16782525
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7632-E7641
pubmed: 30037999

Auteurs

Anthony J Treichel (AJ)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Isabelle Finholm (I)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Kaitlyn R Knutson (KR)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Constanza Alcaino (C)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Sara T Whiteman (ST)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Matthew R Brown (MR)

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

Aleksey Matveyenko (A)

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

Andrew Wegner (A)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Halil Kacmaz (H)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Arnaldo Mercado-Perez (A)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota.

Gabriella Bedekovicsne Gajdos (GB)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Tamas Ordog (T)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

Madhusudan Grover (M)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.

Joseph Szurszewski (J)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

David R Linden (DR)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

Gianrico Farrugia (G)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.

Arthur Beyder (A)

Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota. Electronic address: beyder.arthur@mayo.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH