Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments.

Heliconia acuminata Amazon ENSO Heliconiaceae delayed effects demography distributed lag nonlinear models drought habitat fragmentation

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
01 2022
Historique:
revised: 08 09 2021
received: 28 06 2021
accepted: 14 09 2021
pubmed: 27 10 2021
medline: 4 1 2022
entrez: 26 10 2021
Statut: ppublish

Résumé

Deforestation often results in landscapes where remaining forest habitat is highly fragmented, with remnants of different sizes embedded in an often highly contrasting matrix. Local extinction of species from individual fragments is common, but the demographic mechanisms underlying these extinctions are poorly understood. It is often hypothesized that altered environmental conditions in fragments drive declines in reproduction, recruitment, or survivorship. The Amazon basin, in addition to experiencing continuing fragmentation, is experiencing climate change-related increases in the frequency and intensity of droughts and unusually wet periods. Whether plant populations in tropical forest fragments are particularly susceptible to extremes in precipitation remains unclear. Most studies of plants in fragments are relatively short (1-6 years), focus on a single life-history stage, and often do not compare to populations in continuous forest. Even fewer studies consider delayed effects of climate on demographic vital rates despite the importance of delayed effects in studies that consider them. Using a decade of demographic and climate data from an experimentally fragmented landscape in the Central Amazon, we assess the effects of climate on populations of an understory herb (Heliconia acuminata, Heliconiaceae). We used distributed lag nonlinear models to understand the delayed effects of climate (measured as standardized precipitation evapotranspiration index, SPEI) on survival, growth, and flowering. We detected delayed effects of climate up to 36 months. Extremes in SPEI in the previous year reduced survival, drought in the wet season 8-11 months prior to the February census increased growth, and drought two dry seasons prior increased flowering probability. Effects of extremes in precipitation on survival and growth were more pronounced in forest fragments compared to continuous forest. The complex delayed effects of climate and habitat fragmentation in our study point to the importance of long-term demography experiments in understanding the effects of anthropogenic change on plant populations.

Identifiants

pubmed: 34697872
doi: 10.1111/gcb.15900
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

463-479

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Aguirre, B. A., Hsieh, B., Watson, S. J., & Wright, A. J. (2021). The experimental manipulation of atmospheric drought: Teasing out the role of microclimate in biodiversity experiments. Journal of Ecology, 109(5), 1986-1999. https://doi.org/10.1111/1365-2745.13595
Alfaro-Sánchez, R., Muller-Landau, H. C., Wright, S. J., & Camarero, J. J. (2017). Growth and reproduction respond differently to climate in three Neotropical tree species. Oecologia, 184(2), 531-541. https://doi.org/10.1007/s00442-017-3879-3
Alroy, J. (2017). Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 6056-6061. https://doi.org/10.1073/pnas.1611855114
Anderegg, W. R. L., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., Litvak, M., Ogle, K., Shaw, J. D., Shevliakova, E., Williams, A. P., Wolf, A., Ziaco, E., & Pacala, S. (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247), 528-532. https://doi.org/10.1126/science.aab1833
Arroyo-Rodríguez, V., Saldaña-Vázquez, R. A., Fahrig, L., & Santos, B. A. (2017). Does forest fragmentation cause an increase in forest temperature? Ecological Research, 32(1), 81-88. https://doi.org/10.1007/s11284-016-1411-6
Beguería, S., & Vicente-Serrano, S. M. (2017). SPEI: Calculation of the standardised precipitation-evapotranspiration index. https://CRAN.R-project.org/package=SPEI
Betts, M. G., Wolf, C., Pfeifer, M., Banks-Leite, C., Arroyo-Rodríguez, V., Ribeiro, D. B., Barlow, J., Eigenbrod, F., Faria, D., Fletcher, R. J., Hadley, A. S., Hawes, J. E., Holt, R. D., Klingbeil, B., Kormann, U., Lens, L., Levi, T., Medina-Rangel, G. F., Melles, S. L., … Ewers, R. M. (2019). Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 366(6470), 1236-1239. https://doi.org/10.1126/science.aax9387
Bianchi, C. A., & Haig, S. M. (2013). Deforestation trends of tropical dry forests in Central Brazil. Biotropica, 45(3), 395-400. https://doi.org/10.1111/btp.12010
Bierregaard, R. O., Gascon, C., Lovejoy, T. E., Mesquita, R. (Eds.). (2001). Lessons from Amazonia: The ecology and conservation of a fragmented forest. Yale University Press.
Bierregaard, R. O., Lovejoy, T. E., Kapos, V., & Hutchings, R. W. (1992). The biological dynamics of tropical rainforest fragments. BioScience, 42(11), 859-866. https://doi.org/10.2307/1312085
Broadbent, E. N., Asner, G. P., Keller, M., Knapp, D. E., Oliveira, P. J. C., & Silva, J. N. (2008). Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation, 141, 1745-1757. https://doi.org/10.1016/j.biocon.2008.04.024
Brodie, J., Post, E., & Laurance, W. F. (2012). Climate change and tropical biodiversity: A new focus. Trends in Ecology & Evolution, 27(3), 145-150. https://doi.org/10.1016/j.tree.2011.09.008
Brooks, M. E., Kristensen, K., Darrigo, M. R., Rubim, P., Uriarte, M., Bruna, E. M., & Bolker, B. M. (2019). Statistical modeling of patterns in annual reproductive rates. Ecology, 100(7). https://doi.org/10.1002/ecy.2706
Bruna, E. M. (1999). Seed germination in rainforest fragments. Nature, 402(6758), 139. https://doi.org/10.1038/45963
Bruna, E. M. (2002). Effects of forest fragmentation on Heliconia acuminata seedling recruitment in central Amazonia. Oecologia, 132(2), 235-243. https://doi.org/10.1007/s00442-002-0956-y
Bruna, E. M. (2003). Are plant populations in fragmented habitats recruitment limited? Tests with an Amazonian herb. Ecology, 84(4), 932-947. https://doi.org/10.1890/0012-9658(2003)084[0932:APPIFH]2.0.CO;2
Bruna, E. M., Fiske, I. J., & Trager, M. D. (2009). Habitat fragmentation and plant populations: Is what we know demographically irrelevant? Journal of Vegetation Science, 20(3), 569-576. https://doi.org/10.1111/j.1654-1103.2009.01060.x
Bruna, E. M., & Kress, W. J. (2002). Habitat fragmentation and the demographic structure of an Amazonian understory herb (Heliconia acuminata). Conservation Biology, 16(5), 1256-1266. https://doi.org/10.1046/j.1523-1739.2002.99494.x
Bruna, E. M., Kress, W. J., Marques, F., & da Silva, O. F. (2004). Heliconia acuminata reproductive success is independent of local floral density. Acta Amazonica, 34(3), 467-471. https://doi.org/10.1590/S0044-59672004000300012
Bruna, E. M., Nardy, O., Strauss, S. Y., & Harrison, S. (2002). Experimental assessment of Heliconia acuminata growth in a fragmented Amazonian landscape. Journal of Ecology, 90(4), 639-649. https://doi.org/10.1046/j.1365-2745.2002.00707.x
Bruna, E. M., & Oli, M. K. (2005). Demographic effects of habitat fragmentation on a tropical herb: Life-table response experiments. Ecology, 86(7), 1816-1824. https://doi.org/10.1890/04-1716
Bruna, E. M., & Ribeiro, M. B. N. (2005). The compensatory responses of an understory herb to experimental damage are habitat-dependent. American Journal of Botany, 92(12), 2101-2210. https://doi.org/10.3732/ajb.92.12.2101
Canham, C. D., Denslow, J. S., Platt, W. J., Runkle, J. R., Spies, T. A., & White, P. S. (1990). Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research, 20(5), 620-631. https://doi.org/10.1139/x90-084
Compagnoni, A., Evers, S., & Knight, T. M. (2021, August 2). Spatial replication provides substantial opportunities to estimate plant population responses to temporal climatic variation [Conference presentation]. Ecological Society of America Annual Meeting, virtual. https://cdmcd.co/3wqnd9
Condit, R., Aguilar, S., Hernandez, A., Perez, R., Lao, S., Angehr, G., Hubbell, S. P., & Foster, R. B. (2004). Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology, 20(01), 51-72. https://doi.org/10.1017/S0266467403001081
Connell, J. H., & Green, P. T. (2000). Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology, 81(2), 568-584. https://doi.org/10.1890/0012-9658(2000)081[0568:SDOTTY]2.0.CO;2
Côrtes, M. C., Uriarte, M., Lemes, M. R., Gribel, R., Kress, W. J., Smouse, P. E., & Bruna, E. M. (2013). Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia Acuminata. Molecular Ecology, 22(22), 5716-5729. https://doi.org/10.1111/mec.12495
Criley, R., & Lekawatana, S. (1994). Year around production with high yields may be a possibility for Heliconia chartacea. Acta Horticulturae, 397, 95-102. https://doi.org/10.17660/ActaHortic.1995.397.7
Crone, E. E., Menges, E. S., Ellis, M. M., Bell, T., Bierzychudek, P., Ehrlen, J., Kaye, T. N., Knight, T. M., Lesica, P., Morris, W. F., Oostermeijer, G., Quintana-Ascencio, P. F., Stanley, A., Ticktin, T., Valverde, T., & Williams, J. L. (2011). How do plant ecologists use matrix population models? Ecology Letters, 14(1), 1-8. https://doi.org/10.1111/j.1461-0248.2010.01540.x
da Silva, J. M. C., & Tabarelli, M. (2000). Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature, 404(6773), 72-74. https://doi.org/10.1038/35003563
Didham, R. K., Kapos, V., & Ewers, R. M. (2012). Rethinking the conceptual foundations of habitat fragmentation research. Oikos, 121(2), 161-170. https://doi.org/10.1111/j.1600-0706.2011.20273.x
Didham, R. K., & Lawton, J. H. (1999). Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica, 31(1), 17-30. https://doi.org/10.1111/j.1744-7429.1999.tb00113.x
Doak, D. F., & Morris, W. F. (2010). Demographic compensation and tipping points in climate-induced range shifts. Nature, 467(7318), 959-962. https://doi.org/10.1038/nature09439
Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B., & Smith, A. L. (2013). Conceptual domain of the matrix in fragmented landscapes. Trends in Ecology & Evolution, 28(10), 605-613. https://doi.org/10.1016/j.tree.2013.06.010
Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172-13177. https://doi.org/10.1073/pnas.1421010112
Edwards, W., & Krockenberger, A. (2006). Seedling mortality due to drought and fire associated with the 2002 El Niño event in a tropical rain forest in north-east Queensland, Australia. Biotropica, 38(1), 16-26. https://doi.org/10.1111/j.1744-7429.2006.00098.x
Ehrlen, J., Morris, W. F., von Euler, T., & Dahlgren, J. P. (2016). Advancing environmentally explicit structured population models of plants. Journal of Ecology, 104(2), 292-305. https://doi.org/10.1111/1365-2745.12523
Engelbrecht, B. M. J., Wright, S. J., & De Steven, D. (2002). Survival and ecophysiology of tree seedlings during El Niño drought in a tropical moist forest in Panama. Journal of Tropical Ecology, 18, 569-579. https://doi.org/10.1017/S0266467402002377
Espírito-Santo, F. D. B., Keller, M., Braswell, B., Nelson, B. W., Frolking, S., & Vicente, G. (2010). Storm intensity and old-growth forest disturbances in the Amazon region. Geophysical Research Letters, 37(11). https://doi.org/10.1029/2010GL043146
Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., Brienen, R. J. W., Feldpausch, T. R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B. S., Marimon-Junior, B. H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., … Phillips, O. L. (2019). Compositional response of Amazon forests to climate change. Global Change Biology, 25(1), 39-56. https://doi.org/10.1111/gcb.14413
Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: Wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995-2006. https://doi.org/10.1111/nph.17005
Evers, S. M., Knight, T. M., Inouye, D. W., Miller, T. E. X., Salguero-Gómez, R., Iler, A. M., & Compagnoni, A. (2021). Lagged and dormant season climate better predict plant vital rates than climate during the growing season. Global Change Biology, 27(9), 1927-1941. https://doi.org/10.1111/gcb.15519
Ewers, R. M., & Banks-Leite, C. (2013). Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One, 8(3), e58093. https://doi.org/10.1371/journal.pone.0058093
Feeley, K. J., Malhi, Y., Zelazowski, P., & Silman, M. R. (2012). The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of Amazonian plant species. Global Change Biology, 18(8), 2636-2647. https://doi.org/10.1111/j.1365-2486.2012.02719.x
Gagnon, P. R., Bruna, E. M., Rubim, P., Darrigo, M. R., Littell, R. C., Uriarte, M., & Kress, W. J. (2011). Growth of an understory herb is chronically reduced in Amazonian forest fragments. Biological Conservation, 144(2), 830-835. https://doi.org/10.1016/j.biocon.2010.11.015
Gaoue, O. G., Horvitz, C. C., Steiner, U. K., & Tuljapurkar, S. (2019). Climate, rather than human disturbance, is the main driver of age-specific mortality trajectories in a tropical tree. Ecological Modelling, 400, 34-40. https://doi.org/10.1016/j.ecolmodel.2019.03.007
Gasparrini, A. (2011). Distributed lag linear and non-linear models in R: The package dlnm. Journal of Statistical Software, 43(8), 1-20. https://doi.org/10.18637/jss.v043.i08
Gasparrini, A., Scheipl, F., Armstrong, B., & Kenward, M. G. (2017). A penalized framework for distributed lag non-linear models: Penalized DLNMs. Biometrics, 73(3), 938-948. https://doi.org/10.1111/biom.12645
Gentry, A. H., & Dodson, C. (1987). Contribution of nontrees to species richness of a tropical rain forest. Biotropica, 19(2), 149-156. https://doi.org/10.2307/2388737
González-M., R., Posada, J. M., Carmona, C. P., Garzón, F., Salinas, V., Idárraga-Piedrahita, Á., Pizano, C., Avella, A., López-Camacho, R., Norden, N., Nieto, J., Medina, S. P., Rodríguez-M., G. M., Franke-Ante, R., Torres, A. M., Jurado, R., Cuadros, H., Castaño-Naranjo, A., García, H., & Salgado-Negret, B. (2021). Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecology Letters, 24(3), 451-463. https://doi.org/10.1111/ele.13659
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052
Holyoak, M., & Heath, S. K. (2016). The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview. Integrative Zoology, 11(1), 40-59. https://doi.org/10.1111/1749-4877.12167
Honnay, O., Verheyen, K., Butaye, J., Jacquemyn, H., Bossuyt, B., & Hermy, M. (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters, 5(4), 525-530. https://doi.org/10.1046/j.1461-0248.2002.00346.x
Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W., Nemani, R. R., & Myneni, R. (2006). Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 33(6). https://doi.org/10.1029/2005GL025583
Janssen, T., van der Velde, Y., Hofhansl, F., Luyssaert, S., Naudts, K., Driessen, B., Fleischer, K., & Dolman, H. (2021). Drought effects on leaf fall, leaf flushing and stem growth in Neotropical forest; reconciling remote sensing data and field observations. Biogeosciences Discussions, 1-41. https://doi.org/10.5194/bg-2021-30
Jones, M. O., Kimball, J. S., & Nemani, R. R. (2014). Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability. Environmental Research Letters, 9(12), 124021. https://doi.org/10.1088/1748-9326/9/12/124021
Kannenberg, S. A., Schwalm, C. R., & Anderegg, W. R. L. (2020). Ghosts of the past: How drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 23(5), 891-901. https://doi.org/10.1111/ele.13485
Klimešová, J., Martínková, J., & Ottaviani, G. (2018). Belowground plant functional ecology: Towards an integrated perspective. Functional Ecology, 32(9), 2115-2126. https://doi.org/10.1111/1365-2435.13145
Kress, W. J. (1990). The diversity and distribution of Heliconia (Heliconiaceae) in Brazil. Acta Botanica Brasileira, 4(1), 159-167. https://doi.org/10.1590/S0102-33061990000100011
Landau, W. M. (2021). The targets R package: A dynamic Make-like function-oriented pipeline toolkit for reproducibility and high-performance computing. Journal of Open Source Software, 6(57), 2959. https://doi.org/10.21105/joss.02959
Laurance, W. F., Andrade, A. S., Magrach, A., Camargo, J. L. C., Campbell, M., Fearnside, P. M., Edwards, W., Valsko, J. J., Lovejoy, T. E., & Laurance, S. G. (2014). Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology, 95(11), 3018-3026. https://doi.org/10.1890/14-0330.1
Laurance, W. F., Ferreira, L. V., Rankin de Merona, J. M., & Laurance, S. G. (1998). Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology, 79(6), 2032-2040. https://doi.org/10.1890/0012-9658(1998)079[2032:RFFATD]2.0.CO;2
Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A., Ribeiro, J. E. L. S., Giraldo, J. P., Lovejoy, T. E., Condit, R., Chave, J., Harms, K. E., & D'Angelo, S. (2006). Rapid decay of tree-community composition in Amazonian forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 19010-19014. https://doi.org/10.1073/pnas.0609048103
Laurance, W. F., & Williamson, G. B. (2001). Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology, 15(6), 1529-1535. https://doi.org/10.1046/j.1523-1739.2001.01093.x
Laurance, W. F., Williamson, G. B., Delamônica, P., Oliveira, A., Lovejoy, T. E., Gascon, C., & Pohl, L. (2001). Effects of a strong drought on Amazonian forest fragments and edges. Journal of Tropical Ecology, 17(6), 771-785. https://doi.org/10.1017/S0266467401001596
Leitold, V., Morton, D. C., Longo, M., dos-Santos, M. N., Keller, M., & Scaranello, M. (2018). El Niño drought increased canopy turnover in Amazon forests. New Phytologist, 219(3), 959-971. https://doi.org/10.1111/nph.15110
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., & Nepstad, D. (2011). The 2010 Amazon drought. Science, 331(6017), 554. https://doi.org/10.1126/science.1200807
Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., Sampaio de Oliveira, G., de Oliveira, R., Camargo, H., Alves, L. M., & Brown, I. F. (2008). The drought of Amazonia in 2005. Journal of Climate, 21(3), 495-516. https://doi.org/10.1175/2007JCLI1600.1
Markewitz, D., Devine, S., Davidson, E. A., Brando, P., & Nepstad, D. C. (2010). Soil moisture depletion under simulated drought in the Amazon: Impacts on deep root uptake. New Phytologist, 187(3), 592-607. https://doi.org/10.1111/j.1469-8137.2010.03391.x
Marra, G., & Wood, S. N. (2011). Practical variable selection for generalized additive models. Computational Statistics & Data Analysis, 55(7), 2372-2387. https://doi.org/10.1016/j.csda.2011.02.004
McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January 17-22). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th conference on applied climataology. Eighth Conference on Applied Climatology, Anaheim, CA.
McPhaden, M. J. (1999). The child prodigy of 1997-98. Nature, 398(6728), 559-561. https://doi.org/10.1038/19193
Molowny-Horas, R., Suarez, M. L., & Lloret, F. (2017). Changes in the natural dynamics of Nothofagus dombeyi forests: Population modeling with increasing drought frequencies. Ecosphere, 8(3), e01708. https://doi.org/10.1002/ecs2.1708
Morris, W. F., & Doak, D. F. (2002). Quantitative conservation biology: Theory and practice of population viability analysis. Sinauer.
Morris, W. F., Pfister, C. A., Tuljapurkar, S., Haridas, C. V., Boggs, C. L., Boyce, M. S., Bruna, E. M., Church, D. R., Coulson, T., Doak, D. F., Forsyth, S., Gaillard, J.-M., Horvitz, C. C., Kalisz, S., Kendall, B. E., Knight, T. M., Lee, C. T., & Menges, E. S. (2008). Longevity can buffer plant and animal populations against changing climatic variability. Ecology, 89(1), 19-25. https://doi.org/10.1890/07-0774.1
Mundim, F. M., & Bruna, E. M. (2016). Is there a temperate bias in our understanding of how climate change will alter plant-herbivore interactions? A meta-analysis of experimental studies. American Naturalist, 188, S74-S89. https://doi.org/10.1086/687530
Nakazono, E. M., Bruna, E. M., & Mesquita, R. C. G. (2004). Experiemental harvesting of the non-timber forest product Ischnosiphon polyphyllus in central Amazonia. Forest Ecology and Management, 190(2-3), 219-225. https://doi.org/10.1016/j.foreco.2003.10.013
Negrón-Juárez, R. I., Holm, J. A., Marra, D. M., Rifai, S. W., Riley, W. J., Chambers, J. Q., Koven, C. D., Knox, R. G., McGroddy, M. E., Vittorio, A. V. D., Urquiza-Muñoz, J., Tello-Espinoza, R., Muñoz, W. A., Ribeiro, G. H. P. M., & Higuchi, N. (2018). Vulnerability of Amazon forests to storm-driven tree mortality. Environmental Research Letters, 13(5), 054021. https://doi.org/10.1088/1748-9326/aabe9f
Ogle, K., Barber, J. J., Barron-Gafford, G. A., Bentley, L. P., Young, J. M., Huxman, T. E., Loik, M. E., & Tissue, D. T. (2015). Quantifying ecological memory in plant and ecosystem processes. Ecology Letters, 18(3), 221-235. https://doi.org/10.1111/ele.12399
Oliver, T. H., Marshall, H. H., Morecroft, M. D., Brereton, T., Prudhomme, C., & Huntingford, C. (2015). Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nature Climate Change, 5(10), 941-945. https://doi.org/10.1038/nclimate2746
Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117(3), 285-297. https://doi.org/10.1016/j.biocon.2003.12.008
Paniw, M., James, T. D., Ruth Archer, C., Römer, G., Levin, S., Compagnoni, A., Che-Castaldo, J., Bennett, J. M., Mooney, A., Childs, D. Z., Ozgul, A., Jones, O. R., Burns, J. H., Beckerman, A. P., Patwary, A., Sanchez-Gassen, N., Knight, T. M., & Salguero-Gómez, R. (2021). The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. Journal of Animal Ecology, 90(6), 1398-1407. https://doi.org/10.1111/1365-2656.13467
Parent, C., Nicolas, C., Audrey, B., Crevècoeur, M., & Dat, J. (2008). An overview of plant responses to soil waterlogging. Plant Stress, 2(1), 20-27.
Pau, S., Wolkovich, E. M., Cook, B. I., Nytch, C. J., Regetz, J., Zimmerman, J. K., & Joseph Wright, S. (2013). Clouds and temperature drive dynamic changes in tropical flower production. Nature Climate Change, 3(9), 838-842. https://doi.org/10.1038/nclimate1934
Payton, M. E., Greenstone, M. H., & Schenker, N. (2003). Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? Journal of Insect Science, 3(34), 1-6. https://doi.org/10.1673/031.003.3401
Pedersen, T. L. (2020). Patchwork: The composer of plots [Manual].
Phillips, O. L., Aragao, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Banki, O., Blanc, L., Bonal, D., … Torres-Lezama, A. (2009). Drought sensitivity of the Amazon rainforest. Science, 323(5919), 1344-1347. https://doi.org/10.1126/science.1164033
Phillips, O. L., van der Heijden, G., Lewis, S. L., López-González, G., Aragão, L. E. O. C., Lloyd, J., Malhi, Y., Monteagudo, A., Almeida, S., Dávila, E. A., Amaral, I., Andelman, S., Andrade, A., Arroyo, L., Aymard, G., Baker, T. R., Blanc, L., Bonal, D., de Oliveira, Á. C. A., … Vilanova, E. (2010). Drought-mortality relationships for tropical forests. New Phytologist, 187(3), 631-646. https://doi.org/10.1111/j.1469-8137.2010.03359.x
Pumisutapon, P., Visser, R. G. F., & de Klerk, G.-J. (2012). Moderate abiotic stresses increase rhizome growth and outgrowth of axillary buds in Alstroemeria cultured in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 110(3), 395-400. https://doi.org/10.1007/s11240-012-0160-7
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rankin-de-Mérona, J. M., Prance, G. T., Hutchings, R. W., da Silva, M. F., Rodrigues, W. A., & Uehling, M. E. (1992). Preliminary results of a large-scale tree inventory of upland rain forest in the central Amazon. Acta Amazonica, 22(4), 493-534. https://doi.org/10.1590/1809-43921992224534
Ribeiro, M. B. N., Bruna, E. M., & Mantovani, W. (2010). Influence of post-clearing treatment on the recovery of herbaceous plant communities in Amazonian secondary forests. Restoration Ecology, 18, 50-58. https://doi.org/10.1111/j.1526-100X.2010.00715.x
Rundel, P. W., Cooley, A. M., Gerst, K. L., Riordan, E. C., Sharifi, M. R., Sun, J. W., & Tower, J. A. (2020). Functional traits of broad-leaved monocot herbs in the understory and forest edges of a Costa Rican rainforest. PeerJ, 8, e9958. https://doi.org/10.7717/peerj.9958
Rundel, P. W., Sharifi, M. R., Gibson, A. C., & Esler, K. J. (1998). Structural and physiological adaptation to light environments in Neotropical Heliconia (Heliconiaceae). Journal of Tropical Ecology, 14(6), 789-801. https://doi.org/10.1017/S0266467498000571
Salguero-Gómez, R., Jones, O. R., Archer, C. R., Buckley, Y. M., Che-Castaldo, J., Caswell, H., Hodgson, D., Scheuerlein, A., Conde, D. A., Brinks, E., Buhr, H., Farack, C., Gottschalk, F., Hartmann, A., Henning, A., Hoppe, G., Römer, G., Runge, J., Ruoff, T., … Vaupel, J. W. (2015). The COMPADRE Plant Matrix Database: An open online repository for plant demography. Journal of Ecology, 103(1), 202-218. https://doi.org/10.1111/1365-2745.12334
Sapsford, S. J., Paap, T., Hardy, G. E., St, J., & Burgess, T. I. (2017). The ‘chicken or the egg’: Which comes first, forest tree decline or loss of mycorrhizae? Plant Ecology, 218(9), 1093-1106. https://doi.org/10.1007/s11258-017-0754-6
Scariot, A. (1999). Forest fragmentation effects on palm diversity in central Amazonia. Journal of Ecology, 87(1), 66-76. https://doi.org/10.1046/j.1365-2745.1999.00332.x
Scariot, A. (2000). Seedling mortality by litterfall in Amazonian forest fragments. Biotropica, 32, 662-669. https://doi.org/10.1111/j.1744-7429.2000.tb00513.x
Scheffers, B. R., Edwards, D. P., Macdonald, S. L., Senior, R. A., Andriamahohatra, L. R., Roslan, N., Rogers, A. M., Haugaasen, T., Wright, P., & Williams, S. E. (2017). Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica, 49(1), 35-44. https://doi.org/10.1111/btp.12355
Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., Fisher, J. B., Biondi, F., Koch, G., Litvak, M., Ogle, K., Shaw, J. D., Wolf, A., Huntzinger, D. N., Schaefer, K., Cook, R., Wei, Y., Fang, Y., Hayes, D., Huang, M., Jain, A., & Tian, H. (2017). Global patterns of drought recovery. Nature, 548(7666), 202-205. https://doi.org/10.1038/nature23021
Schwartz, N. B., Budsock, A. M., & Uriarte, M. (2019). Fragmentation, forest structure, and topography modulate impacts of drought in a tropical forest landscape. Ecology, 100(6), e02677. https://doi.org/10.1002/ecy.2677
Scott, E. R., Wei, J.-P., Li, X., Han, W.-Y., & Orians, C. M. (2021). Differing non-linear, lagged effects of temperature and precipitation on an insect herbivore and its host plant. Ecological Entomology, 46(4), 866-876. https://doi.org/10.1111/een.13023
Selwood, K. E., McGeoch, M. A., & Nally, R. M. (2015). The effects of climate change and land-use change on demographic rates and population viability. Biological Reviews, 90(3), 837-853. https://doi.org/10.1111/brv.12136
Silva Junior, C. H. L., Pessôa, A. C. M., Carvalho, N. S., Reis, J. B. C., Anderson, L. O., & Aragão, L. E. O. C. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology & Evolution, 5(2), 144-145. https://doi.org/10.1038/s41559-020-01368-x
Simpson, G. L. (2021). Gratia: Graceful ‘ggplot’-Based graphics and other functions for GAMs fitted using ’mgcv’ [Manual].
Sletvold, N. (2005). Density-dependent growth and survival in a natural population of the facultative biennial Digitalis purpurea. Journal of Ecology, 93(4), 727-736. https://doi.org/10.1111/j.1365-2745.2005.01008.x
Snow, D. W. (1981). Tropical frugivorous birds and their food plants - A world survey. Biotropica, 13(1), 1-14. https://doi.org/10.2307/2387865
Ssali, F., Moe, S. R., & Sheil, D. (2019). Damage to artificial seedlings across a disturbed Afromontane forest landscape. Biotropica, 51(5), 652-663. https://doi.org/10.1111/btp.12703
Stiles, F. G. (1975). Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology, 56(2), 285-301. https://doi.org/10.2307/1934961
Stouffer, P. C., & Bierregaard, R. O. (1996). Forest fragmentation and seasonal patterns of hummingbird abundance in Amazonian Brazil. Ararajuba, 4(1), 9-14.
Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M. S., Rödig, E., Wiegand, T., & Huth, A. (2018). Global patterns of tropical forest fragmentation. Nature, 554(7693), 519-522. https://doi.org/10.1038/nature25508
Teller, B. J., Adler, P. B., Edwards, C. B., Hooker, G., & Ellner, S. P. (2016). Linking demography with drivers: Climate and competition. Methods in Ecology and Evolution, 7(2), 171-183. https://doi.org/10.1111/2041-210X.12486
Tenhumberg, B., Crone, E. E., Ramula, S., & Tyre, A. J. (2018). Time-lagged effects of weather on plant demography: Drought and Astragalus scaphoides. Ecology, 99(4), 915-925. https://doi.org/10.1002/ecy.2163
Ticktin, T. (2003). Relationships between El Niño Southern Oscillation and demographic patterns in a substitute food for collared peccaries in Panama. Biotropica, 35(2), 189-197. https://doi.org/10.1111/j.1744-7429.2003.tb00278.x
Uriarte, M., Anciães, M., da Silva, M. T. B., Rubim, R., Johnson, E., & Bruna, E. M. (2011). Disentangling the drivers of reduced long-distance seed dispersal by birds in an experimentally fragmented landscape. Ecology, 92(4), 924-937. https://doi.org/10.1890/10-0709.1
Uriarte, M., Bruna, E. M., Rubim, P., Anciães, M., & Jonckheere, I. (2010). Effects of forest fragmentation on the seedling recruitment of a tropical herb: Assessing seed vs. safe-site limitation. Ecology, 91(5), 1317-1328. https://doi.org/10.1890/09-0785.1
Uriarte, M., Muscarella, R., & Zimmerman, J. K. (2018). Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Global Change Biology, 24(2), e692-e704. https://doi.org/10.1111/gcb.14000
Uriarte, M., Schwartz, N., Powers, J. S., Marín-Spiotta, E., Liao, W., & Werden, L. K. (2016). Impacts of climate variability on tree demography in second growth tropical forests: The importance of regional context for predicting successional trajectories. Biotropica, 48(6), 780-797. https://doi.org/10.1111/btp.12380
van de Pol, M., Bailey, L. D., McLean, N., Rijsdijk, L., Lawson, C. R., & Brouwer, L. (2016). Identifying the best climatic predictors in ecology and evolution. Methods in Ecology and Evolution, 7(10), 1246-1257. https://doi.org/10.1111/2041-210X.12590
Vasconcelos, H. L., & Luizão, F. J. (2004). Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecological Applications, 14(3), 884-892. https://doi.org/10.1890/03-5093
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
Westerband, A. C., Horvitz, C. C., & Gilliam, F. (2017). Early life conditions and precipitation influence the performance of widespread understorey herbs in variable light environments. Journal of Ecology, 105(5), 1298-1308. https://doi.org/10.1111/1365-2745.12757
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Williams, J. L., Jacquemyn, H., Ochocki, B. M., Brys, R., Miller, T. E. X., & Shefferson, R. (2015). Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. Journal of Ecology, 103(4), 798-808. https://doi.org/10.1111/1365-2745.12369
Williamson, G. B., Laurance, W. F., Oliveira, A. A., Delamônica, P., Gascon, C., Lovejoy, T. E., & Pohl, L. (2000). Amazonian tree mortality during the 1997 El Niño drought. Conservation Biology, 14(5), 1538-1542. https://doi.org/10.1046/j.1523-1739.2000.99298.x
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). CRC Press/Taylor & Francis Group.
Wright, S. J. (1992). Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends in Ecology & Evolution, 7(8), 260-263. https://doi.org/10.1016/0169-5347(92)90171-7
Wright, S. J., & Calderon, O. (2006). Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecology Letters, 9(1), 35-44. https://doi.org/10.1111/j.1461-0248.2005.00851.x
Wright, S. J., Carrasco, C., Calderon, O., & Paton, S. (1999). The El Niño Southern Oscillation variable fruit production, and famine in a tropical forest. Ecology, 80(5), 1632-1647. https://doi.org/10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2
Xavier, A. C., King, C. W., & Scanlon, B. R. (2016). Daily gridded meteorological variables in Brazil (1980). International Journal of Climatology, 36(6), 2644-2659. https://doi.org/10.1002/joc.4518
Zartman, C. E., Amaral, J. A., Figueiredo, J. N., & Dambros, C. D. (2015). Drought impacts survivorship and reproductive strategies of an epiphyllous leafy liverwort in central Amazonia. Biotropica, 47(2), 172-178. https://doi.org/10.1111/btp.12201
Zeng, N., Yoon, J. H., Marengo, J. A., Subramaniam, A., Nobre, C. A., Mariotti, A., & Neelin, J. D. (2008). Causes and impacts of the 2005 Amazon drought. Environmental Research Letters, 3(1), 1-9. https://doi.org/10.1088/1748-9326/3/1/014002

Auteurs

Eric R Scott (ER)

Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA.

María Uriarte (M)

Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA.

Emilio M Bruna (EM)

Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA.
Center for Latin American Studies, University of Florida, Gainesville, Florida, USA.
Biological Dynamics of Forest Fragments Project, INPA-PDBFF, Manaus, Amazonas, Brazil.

Articles similaires

Humans Climate Change Health Personnel Surveys and Questionnaires Medical Oncology
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH