Prognostic assessment of the zone of occurrence of radiation combined injuries within a nuclear blast area.
Nuclear detonation
a profound operational performance decrement
mixed gamma-neutron radiation
radiation combined injuries
Journal
International journal of radiation biology
ISSN: 1362-3095
Titre abrégé: Int J Radiat Biol
Pays: England
ID NLM: 8809243
Informations de publication
Date de publication:
2022
2022
Historique:
pubmed:
27
10
2021
medline:
29
4
2022
entrez:
26
10
2021
Statut:
ppublish
Résumé
A detonation of nuclear weapon (NW) is considered as one of the most devastating radiological scenarios in the list of modern global threats. An essential proportion of victims in a mass casualty radiation event may require an immediate medical care due to radiation combined injuries (RCI). Surprisingly, there is a lack of clear guidance for quantitative prognosis of the spatial distribution of expected RCI casesin a given nuclear explosion scenario. This work is aimed at the presentation of a new, improved model, allowing more confident evaluation of the contributions from different NW destructive forces to RCI formation, thus leading to more accurate approximation of the zone around the epicenter for a guided search for RCI cases. The model is made compatible with a classic approach and provides the estimates of radial distance from the epicenter, at which NW explosion can produce RCI. Mathematical formalism comprises a set of equations for the reciprocal assessment of a distance-effect for radiation dose (separately for neutrons and gamma-rays), thermal wave and blast shock wave depending on the NW type, detonation yield and altitude, environmental conditions (i.e. season) and shielding factors. The model's capabilities were demonstrated using an example of the RCI grade causing a profound operational performance decrement of military personnel in two marginal scenarios: Troops deployed in an open area or a tank crew. A remarkable difference in the expected radial zones of possible RCI occurrence was found between the actions of a 'historical' atomic bomb, thermonuclear weapons, and low-yield neutron munitions, also with a noticeable impact of the season factor (summer/winter). For a tank crew the clinically manageable RCI are possible only in very high yield explosion scenarios, while the damage caused by radiation alone possess much higher risk. Suggested formalism may provide guidance for a preliminary planning of countermeasures, targeting of radiation reconnaissance, and clarification of triage results in a broad range of radiological scenarios based on NW detonation. Further improvement of the model is possible by considering neutrons' and gamma-rays' relative biological efficacy, possible shielding factors, and a synergetic effect of NW's destructive forces.
Sections du résumé
BACKGROUND
A detonation of nuclear weapon (NW) is considered as one of the most devastating radiological scenarios in the list of modern global threats. An essential proportion of victims in a mass casualty radiation event may require an immediate medical care due to radiation combined injuries (RCI). Surprisingly, there is a lack of clear guidance for quantitative prognosis of the spatial distribution of expected RCI casesin a given nuclear explosion scenario.
PURPOSE
This work is aimed at the presentation of a new, improved model, allowing more confident evaluation of the contributions from different NW destructive forces to RCI formation, thus leading to more accurate approximation of the zone around the epicenter for a guided search for RCI cases.
MATERIALS AND METHODS
The model is made compatible with a classic approach and provides the estimates of radial distance from the epicenter, at which NW explosion can produce RCI. Mathematical formalism comprises a set of equations for the reciprocal assessment of a distance-effect for radiation dose (separately for neutrons and gamma-rays), thermal wave and blast shock wave depending on the NW type, detonation yield and altitude, environmental conditions (i.e. season) and shielding factors. The model's capabilities were demonstrated using an example of the RCI grade causing a profound operational performance decrement of military personnel in two marginal scenarios: Troops deployed in an open area or a tank crew.
RESULTS
A remarkable difference in the expected radial zones of possible RCI occurrence was found between the actions of a 'historical' atomic bomb, thermonuclear weapons, and low-yield neutron munitions, also with a noticeable impact of the season factor (summer/winter). For a tank crew the clinically manageable RCI are possible only in very high yield explosion scenarios, while the damage caused by radiation alone possess much higher risk.
CONCLUSIONS
Suggested formalism may provide guidance for a preliminary planning of countermeasures, targeting of radiation reconnaissance, and clarification of triage results in a broad range of radiological scenarios based on NW detonation. Further improvement of the model is possible by considering neutrons' and gamma-rays' relative biological efficacy, possible shielding factors, and a synergetic effect of NW's destructive forces.
Identifiants
pubmed: 34699327
doi: 10.1080/09553002.2021.1998707
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM