Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils.
Activin Receptors, Type II
/ genetics
Animals
Bone Marrow Cells
/ cytology
Cell Line, Tumor
Clonal Hematopoiesis
/ genetics
Humans
Hypertension, Pulmonary
/ genetics
Hypoxia
/ metabolism
Janus Kinase 2
/ genetics
Lung
/ immunology
Mice
Mice, Transgenic
Mutation
Myeloproliferative Disorders
/ genetics
Neutrophil Infiltration
Neutrophils
/ immunology
Phosphorylation
Prevalence
STAT3 Transcription Factor
/ metabolism
Signal Transduction
Smad Proteins
/ metabolism
Up-Regulation
Vascular Remodeling
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 10 2021
26 10 2021
Historique:
received:
11
05
2020
accepted:
05
10
2021
entrez:
27
10
2021
pubmed:
28
10
2021
medline:
1
12
2021
Statut:
epublish
Résumé
Pulmonary hypertension (PH) is a progressive cardiopulmonary disease characterized by pulmonary arterial remodeling. Clonal somatic mutations including JAK2V617F, the most frequent driver mutation among myeloproliferative neoplasms, have recently been identified in healthy individuals without hematological disorders. Here, we reveal that clonal hematopoiesis with JAK2V617F exacerbates PH and pulmonary arterial remodeling in mice. JAK2V617F-expressing neutrophils specifically accumulate in pulmonary arterial regions, accompanied by increases in neutrophil-derived elastase activity and chemokines in chronic hypoxia-exposed JAK2V617F transgenic (JAK2
Identifiants
pubmed: 34702814
doi: 10.1038/s41467-021-26435-0
pii: 10.1038/s41467-021-26435-0
pmc: PMC8548396
doi:
Substances chimiques
STAT3 Transcription Factor
0
Smad Proteins
0
JAK2 protein, human
EC 2.7.10.2
Janus Kinase 2
EC 2.7.10.2
Activin Receptors, Type II
EC 2.7.11.30
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6177Informations de copyright
© 2021. The Author(s).
Références
Galie, N. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 37, 67–119 (2016).
pubmed: 26320113
doi: 10.1093/eurheartj/ehv317
Tuder, R. M., Marecki, J. C., Richter, A., Fijalkowska, I. & Flores, S. Pathology of pulmonary hypertension. Clin. Chest Med. 28, 23–42, vii (2007).
pubmed: 17338926
pmcid: 1924722
doi: 10.1016/j.ccm.2006.11.010
Rabinovitch, M., Guignabert, C., Humbert, M. & Nicolls, M. R. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ. Res. 115, 165–175 (2014).
pubmed: 24951765
pmcid: 4097142
doi: 10.1161/CIRCRESAHA.113.301141
Machado, R. F. & Farber, H. W. Pulmonary hypertension associated with chronic hemolytic anemia and other blood disorders. Clin. Chest Med. 34, 739–752 (2013).
pubmed: 24267302
pmcid: 3916937
doi: 10.1016/j.ccm.2013.08.006
Dingli, D., Utz, J. P., Krowka, M. J., Oberg, A. L. & Tefferi, A. Unexplained pulmonary hypertension in chronic myeloproliferative disorders. Chest 120, 801–808 (2001).
pubmed: 11555513
doi: 10.1378/chest.120.3.801
Venton, G. et al. Pulmonary hypertension in patients with myeloproliferative neoplasms: A large cohort of 183 patients. Eur. J. Intern. Med. 68, 71–75 (2019).
pubmed: 31421946
doi: 10.1016/j.ejim.2019.08.004
Simonneau, G. et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 62, D34–D41 (2013).
pubmed: 24355639
doi: 10.1016/j.jacc.2013.10.029
Levine, R. L. & Gilliland, D. G. Myeloproliferative disorders. Blood 112, 2190–2198 (2008).
pubmed: 18779404
pmcid: 2962533
doi: 10.1182/blood-2008-03-077966
Vainchenker, W. & Kralovics, R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 129, 667–679 (2017).
pubmed: 28028029
doi: 10.1182/blood-2016-10-695940
Campbell, P. J. & Green, A. R. The myeloproliferative disorders. N. Engl. J. Med. 355, 2452–2466 (2006).
pubmed: 17151367
doi: 10.1056/NEJMra063728
James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).
pubmed: 15793561
doi: 10.1038/nature03546
Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
pubmed: 25426837
pmcid: 4306669
doi: 10.1056/NEJMoa1408617
Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).
pubmed: 25426838
pmcid: 4290021
doi: 10.1056/NEJMoa1409405
Bejar, R. CHIP, ICUS, CCUS and other four-letter words. Leukemia 31, 1869–1871 (2017).
pubmed: 28592887
doi: 10.1038/leu.2017.181
Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).
pubmed: 28636844
pmcid: 6717509
doi: 10.1056/NEJMoa1701719
Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).
pubmed: 28104796
pmcid: 5542057
doi: 10.1126/science.aag1381
Wang, W. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) Mice. Circ. Res. 123, e35–e47 (2018).
pubmed: 30571460
pmcid: 6309796
doi: 10.1161/CIRCRESAHA.118.313283
Barbui, T. et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood 120, 5128–5133; quiz 5252 (2012).
pubmed: 23033268
doi: 10.1182/blood-2012-07-444067
Gomez-Arroyo, J. et al. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am. J. Physiol. Lung Cell Mol. Physiol. 302, L977–L991 (2012).
pubmed: 22307907
pmcid: 3774477
doi: 10.1152/ajplung.00362.2011
Sugimoto, K. et al. Senescence marker protein 30 deficiency exacerbates pulmonary hypertension in hypoxia-exposed mice. Int. Heart J. 60, 1430–1434 (2019).
pubmed: 31735783
doi: 10.1536/ihj.19-190
Shide, K. et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 22, 87–95 (2008).
pubmed: 18033315
doi: 10.1038/sj.leu.2405043
Ueda, K. et al. Hmga2 collaborates with JAK2V617F in the development of myeloproliferative neoplasms. Blood Adv. 1, 1001–1015 (2017).
pubmed: 29296743
pmcid: 5728313
doi: 10.1182/bloodadvances.2017004457
Farber, H. W. et al. Five-Year outcomes of patients enrolled in the REVEAL Registry. Chest 148, 1043–1054 (2015).
pubmed: 26066077
doi: 10.1378/chest.15-0300
Cowan, K. N. et al. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat. Med. 6, 698–702 (2000).
pubmed: 10835689
doi: 10.1038/76282
Ciuclan, L. et al. A novel murine model of severe pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 184, 1171–1182 (2011).
pubmed: 21868504
doi: 10.1164/rccm.201103-0412OC
Lundberg, P. et al. Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F. J. Exp. Med. 211, 2213–2230 (2014).
pubmed: 25288396
pmcid: 4203945
doi: 10.1084/jem.20131371
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).
pubmed: 9175875
doi: 10.1016/S0014-5793(97)00313-X
Soubrier, F. et al. Genetics and genomics of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 62, D13–D21 (2013).
pubmed: 24355637
doi: 10.1016/j.jacc.2013.10.035
Garrido-Martin, E. M. et al. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1. BMC Mol. Biol. 11, 51 (2010).
pubmed: 20587022
pmcid: 2906440
doi: 10.1186/1471-2199-11-51
Sanvitale, C. E. et al. A new class of small molecule inhibitor of BMP signaling. PLoS ONE 8, e62721 (2013).
pubmed: 23646137
pmcid: 3639963
doi: 10.1371/journal.pone.0062721
Mohedas, A. H. et al. Development of an ALK2-biased BMP type I receptor kinase inhibitor. ACS Chem. Biol. 8, 1291–1302 (2013).
pubmed: 23547776
pmcid: 3901569
doi: 10.1021/cb300655w
Jovanovic, J. V. et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia 27, 2032–2039 (2013).
pubmed: 23860450
pmcid: 3806250
doi: 10.1038/leu.2013.219
Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).
pubmed: 27069254
doi: 10.1182/blood-2016-03-643544
Farha, S. et al. Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities. Blood 117, 3485–3493 (2011).
pubmed: 21258008
pmcid: 3072874
doi: 10.1182/blood-2010-09-306357
Asosingh, K. et al. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood 120, 1218–1227 (2012).
pubmed: 22745307
pmcid: 3418717
doi: 10.1182/blood-2012-03-419275
Srour, S. A. et al. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12. Br. J. Haematol. 174, 382–396 (2016).
pubmed: 27061824
pmcid: 4961550
doi: 10.1111/bjh.14061
Zaidi, S. H., You, X. M., Ciura, S., Husain, M. & Rabinovitch, M. Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105, 516–521 (2002).
pubmed: 11815437
doi: 10.1161/hc0402.102866
Taylor, S., Dirir, O., Zamanian, R. T., Rabinovitch, M. & Thompson, A. A. R. The role of neutrophils and neutrophil elastase in pulmonary arterial hypertension. Front Med. (Lausanne) 5, 217 (2018).
doi: 10.3389/fmed.2018.00217
Pawlus, M. R., Wang, L. & Hu, C. J. STAT3 and HIF1alpha cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene 33, 1670–1679 (2014).
pubmed: 23604114
doi: 10.1038/onc.2013.115
McDonald, J. et al. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet 6, 1 (2015).
pubmed: 25674101
pmcid: 4306304
doi: 10.3389/fgene.2015.00001
Yokokawa, T. et al. A case of pulmonary hypertension and hereditary hemorrhagic telangiectasia related to an ACVRL1 mutation. Intern. Med. 59, 221–227 (2019).
pubmed: 31511490
pmcid: 7008044
doi: 10.2169/internalmedicine.3625-19
Ricard, N. et al. Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood 116, 1604–1612 (2010).
pubmed: 20501893
doi: 10.1182/blood-2010-03-276881
Alaa El Din, F. et al. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia. PLoS ONE 10, e0132111 (2015).
pubmed: 26176610
pmcid: 4503601
doi: 10.1371/journal.pone.0132111
Trembath, R. C. et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345, 325–334 (2001).
pubmed: 11484689
doi: 10.1056/NEJM200108023450503
Jerkic, M. et al. Pulmonary hypertension in adult Alk1 heterozygous mice due to oxidative stress. Cardiovasc Res. 92, 375–384 (2011).
pubmed: 21859819
doi: 10.1093/cvr/cvr232
Tu, L. et al. Selective BMP-9 inhibition partially protects against experimental pulmonary hypertension. Circ. Res. 124, 846–855 (2019).
pubmed: 30636542
doi: 10.1161/CIRCRESAHA.118.313356
Nielsen, C., Bojesen, S. E., Nordestgaard, B. G., Kofoed, K. F. & Birgens, H. S. JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate. Haematologica 99, 1448–1455 (2014).
pubmed: 24907356
pmcid: 4562533
doi: 10.3324/haematol.2014.107631
Perricone, M. et al. The relevance of a low JAK2V617F allele burden in clinical practice: a monocentric study. Oncotarget 8, 37239–37249 (2017).
pubmed: 28422729
pmcid: 5514906
doi: 10.18632/oncotarget.16744
Cordua, S. et al. Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population. Blood 134, 469–479 (2019).
pubmed: 31217187
doi: 10.1182/blood.2019001113
Limvorapitak, W. et al. No Differences in Outcomes Between JAK2 V617F-Positive Patients with Variant Allele Fraction < 2% Versus 2-10%: A 6-Year Province-wide Retrospective Analysis. Clin. Lymphoma Myeloma Leuk. 20, e569–e578 (2020).
pubmed: 32439277
doi: 10.1016/j.clml.2020.04.010
Harrison, C. et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 366, 787–798 (2012).
pubmed: 22375970
doi: 10.1056/NEJMoa1110556
Vannucchi, A. M. et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 372, 426–435 (2015).
pubmed: 25629741
pmcid: 4358820
doi: 10.1056/NEJMoa1409002
Tabarroki, A. et al. Ruxolitinib leads to improvement of pulmonary hypertension in patients with myelofibrosis. Leukemia 28, 1486–1493 (2014).
pubmed: 24406841
doi: 10.1038/leu.2014.5
Miyawaki, H. et al. Long-term effects of the Janus Kinase 1/2 inhibitor ruxolitinib on pulmonary hypertension and the cardiac function in a patient with myelofibrosis. Intern Med. 59, 229–233 (2020).
pubmed: 31534088
doi: 10.2169/internalmedicine.3528-19
Low, A. T., Howard, L., Harrison, C. & Tulloh, R. M. Pulmonary arterial hypertension exacerbated by ruxolitinib. Haematologica 100, e244–e245 (2015).
pubmed: 25682609
pmcid: 4450640
doi: 10.3324/haematol.2014.120816
Gupta, R. et al. Pulmonary hypertension is associated with increased nonrelapse mortality after allogeneic hematopoietic cell transplantation for myelofibrosis. Bone Marrow Transpl. 55, 877–883 (2019).
doi: 10.1038/s41409-019-0741-8
Edelmann, B. et al. JAK2-V617F promotes venous thrombosis through beta1/beta2 integrin activation. J. Clin. Invest 128, 4359–4371 (2018).
pubmed: 30024857
pmcid: 6159978
doi: 10.1172/JCI90312
Kikuchi, N. et al. Selenoprotein P promotes the development of pulmonary arterial hypertension. Circulation 138, 600–623 (2018).
pubmed: 29636330
doi: 10.1161/CIRCULATIONAHA.117.033113
Chen, G. et al. Inhibition of CRTH2-mediated Th2 activation attenuates pulmonary hypertension in mice. J. Exp. Med. 215, 2175–2195 (2018).
pubmed: 29970474
pmcid: 6080901
doi: 10.1084/jem.20171767
Misaka, T. et al. Deficiency of senescence marker protein 30 exacerbates angiotensin II-induced cardiac remodelling. Cardiovasc Res. 99, 461–470 (2013).
pubmed: 23723062
doi: 10.1093/cvr/cvt122
Spiekerkoetter, E. et al. Reactivation of gammaHV68 induces neointimal lesions in pulmonary arteries of S100A4/Mts1-overexpressing mice in association with degradation of elastin. Am. J. Physiol. Lung Cell Mol. Physiol. 294, L276–L289 (2008).
pubmed: 18083765
doi: 10.1152/ajplung.00414.2007
Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet 5, 276–287 (2004).
pubmed: 15131651
doi: 10.1038/nrg1315
Levine, R. L. et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 107, 4139–4141 (2006).
pubmed: 16434490
pmcid: 1895292
doi: 10.1182/blood-2005-09-3900
Takahashi, T. et al. Associations between diabetes mellitus and pulmonary hypertension in chronic respiratory disease patients. PLoS ONE 13, e0205008 (2018).
pubmed: 30300400
pmcid: 6177140
doi: 10.1371/journal.pone.0205008
Misaka, T. et al. Plasma levels of melatonin in dilated cardiomyopathy. J. Pineal Res. 66, e12564 (2019).
pubmed: 30715754
pmcid: 6593840
doi: 10.1111/jpi.12564