K


Journal

Cell research
ISSN: 1748-7838
Titre abrégé: Cell Res
Pays: England
ID NLM: 9425763

Informations de publication

Date de publication:
01 2022
Historique:
received: 22 10 2020
accepted: 25 08 2021
pubmed: 28 10 2021
medline: 28 1 2022
entrez: 27 10 2021
Statut: ppublish

Résumé

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca

Identifiants

pubmed: 34702947
doi: 10.1038/s41422-021-00580-z
pii: 10.1038/s41422-021-00580-z
pmc: PMC8547300
doi:

Substances chimiques

Forkhead Transcription Factors 0
NF-kappa B 0
Potassium Channels 0
Receptors, Antigen, T-Cell 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

72-88

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RTG 2515
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : CRC-TR-128
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB BI1822/1-1

Informations de copyright

© 2021. The Author(s).

Références

Najafi, M., Farhood, B. & Mortezaee, K. Contribution of regulatory T cells to cancer: a review. J. Cell. Physiol. 234, 7983–7993 (2019).
pubmed: 30317612 doi: 10.1002/jcp.27553
Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).
pubmed: 29925983 pmcid: 7882196 doi: 10.1038/s41590-018-0120-4
Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).
pubmed: 20016504 doi: 10.1038/ni.1818
Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).
pubmed: 32017635 doi: 10.1146/annurev-immunol-042718-041717
Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).
pubmed: 21606508 pmcid: 3173240 doi: 10.1084/jem.20110308
Morikawa, H. & Sakaguchi, S. Genetic and epigenetic basis of Treg cell development and function: From a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol. Rev. 259, 192–205 (2014).
pubmed: 24712467 doi: 10.1111/imr.12174
Lio, C. W. J. & Hsieh, C. S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).
pubmed: 18199417 pmcid: 2248212 doi: 10.1016/j.immuni.2007.11.021
Li, M. O. & Rudensky, A. Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16, 220–233 (2016).
pubmed: 27026074 pmcid: 4968889 doi: 10.1038/nri.2016.26
Maloy, K. J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822 (2001).
pubmed: 11526392 doi: 10.1038/ni0901-816
Hogquist, K. A. & Jameson, S. C. The self-obsession of T cells: How TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat. Immunol. 15, 815–823 (2014).
pubmed: 25137456 pmcid: 4348363 doi: 10.1038/ni.2938
Hsieh, C. S., Lee, H. M. & Lio, C. W. J. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).
pubmed: 22322317 doi: 10.1038/nri3155
Mahmud, S. A. et al. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat. Immunol. 15, 473–481 (2014).
pubmed: 24633226 pmcid: 4000541 doi: 10.1038/ni.2849
Berry, C. T., May, M. J. & Freedman, B. D. STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 74, 131–143 (2018).
pubmed: 30048879 pmcid: 6415950 doi: 10.1016/j.ceca.2018.07.003
Bautista, J. L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).
pubmed: 19430476 pmcid: 2756247 doi: 10.1038/ni.1739
Oh-hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).
pubmed: 18327260 pmcid: 2737533 doi: 10.1038/ni1574
Jin, S. et al. Natural regulatory T cells are resistant to calcium release-activated calcium (CRAC/ORAI) channel inhibition. Int. Immunol. 25, 497–506 (2013).
pubmed: 23667148 doi: 10.1093/intimm/dxt013
Eichinger, P. et al. Human T cells in silico: Modelling dynamic intracellular calcium and its influence on cellular electrophysiology. J. Immunol. Methods 461, 78–84 (2018).
pubmed: 30158076 doi: 10.1016/j.jim.2018.06.020
Feske, S., Wulff, H. & Skolnik, E. Y. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291–353 (2015).
pubmed: 25861976 pmcid: 4822408 doi: 10.1146/annurev-immunol-032414-112212
Feliciangeli, S., Chatelain, F. C., Bichet, D. & Lesage, F. The family of K2P channels: Salient structural and functional properties. J. Physiol. 593, 2587–2603 (2015).
pubmed: 25530075 pmcid: 4500345 doi: 10.1113/jphysiol.2014.287268
Bittner, S. et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat. Med. 19, 1161–1165 (2013).
pubmed: 23933981 doi: 10.1038/nm.3303
Meuth, S. G. et al. Altered neuronal expression of TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation. Neurosci. Lett. 446, 133–138 (2008).
pubmed: 18824070 doi: 10.1016/j.neulet.2008.09.038
Bittner, S. et al. Expression of K2P5.1 potassium channels on CD4+T lymphocytes correlates with disease activity in rheumatoid arthritis patients. Arthritis Res. Ther. 13, R21 (2011).
pubmed: 21314928 pmcid: 3241365 doi: 10.1186/ar3245
Bittner, S. et al. Upregulation of K2P5.1 potassium channels in multiple sclerosis. Ann. Neurol. 68, 58–69 (2010).
pubmed: 20582984 doi: 10.1002/ana.22010
Kang, D., Mariash, E. & Kim, D. Functional expression of TRESK-2, a new member of the tandem-pore K + channel family. J. Biol. Chem. 279, 28063–28070 (2004).
pubmed: 15123670 doi: 10.1074/jbc.M402940200
Keshavaprasad, B. et al. Species-spicific differences in response to anesthetics and other modulators by the K2P channel TRESK. Anesth. Analg. 101, 1042–1049 (2005).
pubmed: 16192517 doi: 10.1213/01.ane.0000168447.87557.5a
Czirják, G., Tóth, Z. E. & Enyedi, P. The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J. Biol. Chem. 279, 18550–18558 (2004).
pubmed: 14981085 doi: 10.1074/jbc.M312229200
Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).
pubmed: 15928679 doi: 10.1038/nri1632
Czirják, G. & Enyedi, P. Targeting of calcineurin to an NFAT-like docking site is required for the calcium-dependent activation of the background K+ channel, TRESK. J. Biol. Chem. 281, 14677–14682 (2006).
pubmed: 16569637 doi: 10.1074/jbc.M602495200
Lo, W. L., Donermeyer, D. L. & Allen, P. M. A voltage-gated sodium channel is essential for the positive selection of CD4 + T cells. Nat. Immunol. 13, 880–887 (2012).
pubmed: 22842345 pmcid: 3426661 doi: 10.1038/ni.2379
Dobler, T. et al. TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol. 585, 867–879 (2007).
pubmed: 17962323 pmcid: 2375503 doi: 10.1113/jphysiol.2007.145649
Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, 0169–0178 (2007).
doi: 10.1371/journal.pbio.0050038
Dolmetsch, R. E. & Lewis, R. S. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+channels generates [Ca2+]i oscillations in T lyrnphocytes. J. Gen. Physiol. 103, 365–388 (1994).
pubmed: 8195779 doi: 10.1085/jgp.103.3.365
Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).
pubmed: 9126747 doi: 10.1038/386855a0
Feske, S., Skolnik, E. Y. & Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12, 532–547 (2012).
pubmed: 22699833 pmcid: 3670817 doi: 10.1038/nri3233
Vig, M. & Kinet, J. P. Calcium signaling in immune cells. Nat. Immunol. 10, 21–27 (2009).
pubmed: 19088738 pmcid: 2877033 doi: 10.1038/ni.f.220
Ruan, Q. et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).
pubmed: 20064450 pmcid: 2807990 doi: 10.1016/j.immuni.2009.10.006
Li, Y. Y., Huang, S. S., Lee, M. M., Deng, J. S. & Huang, G. J. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 25, 332–339 (2015).
pubmed: 25681284 doi: 10.1016/j.intimp.2015.02.002
Saadane, A., Masters, S., DiDonato, J., Li, J. & Berger, M. Parthenolide inhibits IκB kinase, NF-κB activation, and inflammatory response in cystic fibrosis cells and mice. Am. J. Respir. Cell Mol. Biol. 36, 728–736 (2007).
pubmed: 17272824 pmcid: 1899341 doi: 10.1165/rcmb.2006-0323OC
Owen, D. L. et al. Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 20, 195–205 (2019).
pubmed: 30643267 pmcid: 6650268 doi: 10.1038/s41590-018-0289-6
Woronicz, J. D. et al. Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol. Cell. Biol. 15, 6364–6376 (1995).
pubmed: 7565789 pmcid: 230888 doi: 10.1128/MCB.15.11.6364
Cowan, J. E. et al. The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J. Exp. Med. 210, 675–681 (2013).
pubmed: 23530124 pmcid: 3620359 doi: 10.1084/jem.20122070
Caramalho, Í., Nunes-Cabaço, H., Foxall, R. B. & Sousa, A. E. Regulatory T-cell development in the human thymus. Front. Immunol. 6, 395 (2015).
pubmed: 26284077 pmcid: 4522873 doi: 10.3389/fimmu.2015.00395
Andres-Enguix, I. et al. Functional analysis of missense variants in the TRESK (KCNK18) K + channel. Sci. Rep. 2, 237 (2012).
pubmed: 22355750 pmcid: 3266952 doi: 10.1038/srep00237
Kranz, J. et al. Clinical practice guideline: uncomplicated bacterial community-acquired urinary tract infection in adults-epidemiology, diagnosis, treatment, and prevention. Dtsch. Arztebl. Int. 114, 866–873 (2017).
pubmed: 29271346 pmcid: 5763001
Hogan, P. G., Lewis, R. S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28, 491–533 (2010).
pubmed: 20307213 pmcid: 2861828 doi: 10.1146/annurev.immunol.021908.132550
Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA 102, 5138–5143 (2005).
pubmed: 15790681 pmcid: 555574 doi: 10.1073/pnas.0501675102
Kwon, H. K., Chen, H. M., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248 (2017).
pubmed: 28892470 pmcid: 5679728 doi: 10.1038/ni.3835
Vaeth, M. et al. Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 109, 16258–16263 (2012).
pubmed: 22991461 pmcid: 3479579 doi: 10.1073/pnas.1203870109
Bandukwala, H. S. et al. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34, 479–491 (2011).
pubmed: 21458306 pmcid: 3085397 doi: 10.1016/j.immuni.2011.02.017
Li, Q. et al. Constitutive nuclear localization of NFAT in Foxp3 + regulatory T cells independent of calcineurin activity. J. Immunol. 188, 4268–4277 (2012).
pubmed: 22490438 doi: 10.4049/jimmunol.1102376
Paiva, R. S. et al. Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proc. Natl. Acad. Sci. USA 110, 6494–6499 (2013).
pubmed: 23576744 pmcid: 3631617 doi: 10.1073/pnas.1221955110
Bittner, S. & Meuth, S. G. Targeting ion channels for the treatment of autoimmune neuroinflammation. Ther. Adv. Neurol. Disord. 6, 322–336 (2013).
pubmed: 23997817 pmcid: 3755531 doi: 10.1177/1756285613487782
Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).
pubmed: 31541224 pmcid: 7773144 doi: 10.1038/s41573-019-0041-4
Romano, M., Fanelli, G., Albany, C. J., Giganti, G. & Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10, 43 (2019).
pubmed: 30804926 pmcid: 6371029 doi: 10.3389/fimmu.2019.00043
Elias, S. & Rudensky, A. Y. Therapeutic use of regulatory T cells for graft-versus-host disease. Br. J. Haematol. 187, 25–38 (2019).
pubmed: 31418827 pmcid: 8054701 doi: 10.1111/bjh.16157
Qu, Y. et al. The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl. Immunol. 17, 153–161 (2007).
pubmed: 17331841 doi: 10.1016/j.trim.2007.01.002
Pawlitzki, M. et al. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine 56, 102822 (2020).
pubmed: 32535547 pmcid: 7286830 doi: 10.1016/j.ebiom.2020.102822
Ruck, T. et al. CD4+NKG2D+ T cells exhibit enhanced migratory and encephalitogenic properties in neuroinflammation. PLoS ONE 8, e81455 (2013).
pubmed: 24282598 pmcid: 3839937 doi: 10.1371/journal.pone.0081455
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
pubmed: 23287722 pmcid: 3712628 doi: 10.1126/science.1232033
Permanyer, M. et al. Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool. Cell. Mol. Immunol. 18, 398–414 (2021).
pubmed: 33408345 pmcid: 8027001 doi: 10.1038/s41423-020-00599-z
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).
pubmed: 18024188 doi: 10.1016/j.immuni.2007.09.010
Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).
pubmed: 12952881 pmcid: 403709 doi: 10.1101/gr.772403
Mi, H. et al. PANTHER version 7: Improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204 (2009).
pubmed: 20015972 pmcid: 2808919 doi: 10.1093/nar/gkp1019
Lenhard, B. et al. Identification of conserved regulatory elements by comparative genome analysis. J. Biol. 2, 13 (2003).
pubmed: 12760745 pmcid: 193685 doi: 10.1186/1475-4924-2-13
Alack, K. et al. Profiling of human lymphocytes reveals a specific network of protein kinases modulated by endurance training status. Sci. Rep. 10, 888 (2020).
pubmed: 31964936 pmcid: 6972788 doi: 10.1038/s41598-020-57676-6
Chirumamilla, C. S. et al. Profiling activity of cellular kinases in migrating T-cells. in Methods in Molecular Biology 1930, 99–113 (Humana Press Inc., 2019).
Schwill, M. et al. Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci. Signal. 12, eaau2875 (2019).
pubmed: 30670633 pmcid: 6546113 doi: 10.1126/scisignal.aau2875
Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).
pubmed: 29275977 doi: 10.1016/S1474-4422(17)30470-2
Lengyel, M., Dobolyi, A., Czirják, G. & Enyedi, P. Selective and state-dependent activation of TRESK (K2P18.1) background potassium channel by cloxyquin. Br. J. Pharmacol. 174, 2102–2113 (2017).
pubmed: 28419410 pmcid: 5466531 doi: 10.1111/bph.13821
Hayes, A. F. & Cai, L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behav. Res. Methods 39, 709–722 (2007).
pubmed: 18183883 doi: 10.3758/BF03192961

Auteurs

Tobias Ruck (T)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany. tobias.ruck@med.uni-duesseldorf.de.
Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany. tobias.ruck@med.uni-duesseldorf.de.

Stefanie Bock (S)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Steffen Pfeuffer (S)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.

Christina B Schroeter (CB)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.

Derya Cengiz (D)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Paul Marciniak (P)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Maren Lindner (M)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Alexander Herrmann (A)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.

Marie Liebmann (M)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Stjepana Kovac (S)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Lukas Gola (L)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Leoni Rolfes (L)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.

Marc Pawlitzki (M)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Nils Opel (N)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Tim Hahn (T)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Udo Dannlowski (U)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Thomas Pap (T)

Institute of Experimental Musculoskeletal Medicine (IMM), University of Münster, Münster, Germany.

Felix Luessi (F)

Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Julian A Schreiber (JA)

Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany.
Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University of Münster, Münster, Germany.

Bernhard Wünsch (B)

Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany.

Tanja Kuhlmann (T)

Institute of Neuropathology, University of Münster, Münster, Germany.

Guiscard Seebohm (G)

Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases (IfGH), University of Münster, Münster, Germany.

Björn Tackenberg (B)

Department of Neurology, Philipps-University, Marburg, Germany.

Patricia Seja (P)

Laboratory of Neurobiology, University of Helsinki, Helsinki, Finland.

Frank Döring (F)

Molecular Electrophysiology, Institute of Physiology and Center of Mental Health, University of Würzburg, Würzburg, Germany.

Erhard Wischmeyer (E)

Molecular Electrophysiology, Institute of Physiology and Center of Mental Health, University of Würzburg, Würzburg, Germany.

Achmet Imam Chasan (AI)

Institute of Immunology, University of Münster, Münster, Germany.

Johannes Roth (J)

Institute of Immunology, University of Münster, Münster, Germany.

Luisa Klotz (L)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Gerd Meyer Zu Hörste (G)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Heinz Wiendl (H)

Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Tobias Marschall (T)

Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.

Stefan Floess (S)

Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.

Jochen Huehn (J)

Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.

Thomas Budde (T)

Institute for Physiology I, University of Münster, Münster, Germany.

Tobias Bopp (T)

Institute of Immunology, Focus Program Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Stefan Bittner (S)

Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Sven G Meuth (SG)

Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH