K
Journal
Cell research
ISSN: 1748-7838
Titre abrégé: Cell Res
Pays: England
ID NLM: 9425763
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
received:
22
10
2020
accepted:
25
08
2021
pubmed:
28
10
2021
medline:
28
1
2022
entrez:
27
10
2021
Statut:
ppublish
Résumé
It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca
Identifiants
pubmed: 34702947
doi: 10.1038/s41422-021-00580-z
pii: 10.1038/s41422-021-00580-z
pmc: PMC8547300
doi:
Substances chimiques
Forkhead Transcription Factors
0
NF-kappa B
0
Potassium Channels
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
72-88Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : RTG 2515
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : CRC-TR-128
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB BI1822/1-1
Informations de copyright
© 2021. The Author(s).
Références
Najafi, M., Farhood, B. & Mortezaee, K. Contribution of regulatory T cells to cancer: a review. J. Cell. Physiol. 234, 7983–7993 (2019).
pubmed: 30317612
doi: 10.1002/jcp.27553
Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).
pubmed: 29925983
pmcid: 7882196
doi: 10.1038/s41590-018-0120-4
Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).
pubmed: 20016504
doi: 10.1038/ni.1818
Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).
pubmed: 32017635
doi: 10.1146/annurev-immunol-042718-041717
Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).
pubmed: 21606508
pmcid: 3173240
doi: 10.1084/jem.20110308
Morikawa, H. & Sakaguchi, S. Genetic and epigenetic basis of Treg cell development and function: From a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol. Rev. 259, 192–205 (2014).
pubmed: 24712467
doi: 10.1111/imr.12174
Lio, C. W. J. & Hsieh, C. S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).
pubmed: 18199417
pmcid: 2248212
doi: 10.1016/j.immuni.2007.11.021
Li, M. O. & Rudensky, A. Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16, 220–233 (2016).
pubmed: 27026074
pmcid: 4968889
doi: 10.1038/nri.2016.26
Maloy, K. J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822 (2001).
pubmed: 11526392
doi: 10.1038/ni0901-816
Hogquist, K. A. & Jameson, S. C. The self-obsession of T cells: How TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat. Immunol. 15, 815–823 (2014).
pubmed: 25137456
pmcid: 4348363
doi: 10.1038/ni.2938
Hsieh, C. S., Lee, H. M. & Lio, C. W. J. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).
pubmed: 22322317
doi: 10.1038/nri3155
Mahmud, S. A. et al. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat. Immunol. 15, 473–481 (2014).
pubmed: 24633226
pmcid: 4000541
doi: 10.1038/ni.2849
Berry, C. T., May, M. J. & Freedman, B. D. STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 74, 131–143 (2018).
pubmed: 30048879
pmcid: 6415950
doi: 10.1016/j.ceca.2018.07.003
Bautista, J. L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).
pubmed: 19430476
pmcid: 2756247
doi: 10.1038/ni.1739
Oh-hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).
pubmed: 18327260
pmcid: 2737533
doi: 10.1038/ni1574
Jin, S. et al. Natural regulatory T cells are resistant to calcium release-activated calcium (CRAC/ORAI) channel inhibition. Int. Immunol. 25, 497–506 (2013).
pubmed: 23667148
doi: 10.1093/intimm/dxt013
Eichinger, P. et al. Human T cells in silico: Modelling dynamic intracellular calcium and its influence on cellular electrophysiology. J. Immunol. Methods 461, 78–84 (2018).
pubmed: 30158076
doi: 10.1016/j.jim.2018.06.020
Feske, S., Wulff, H. & Skolnik, E. Y. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291–353 (2015).
pubmed: 25861976
pmcid: 4822408
doi: 10.1146/annurev-immunol-032414-112212
Feliciangeli, S., Chatelain, F. C., Bichet, D. & Lesage, F. The family of K2P channels: Salient structural and functional properties. J. Physiol. 593, 2587–2603 (2015).
pubmed: 25530075
pmcid: 4500345
doi: 10.1113/jphysiol.2014.287268
Bittner, S. et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat. Med. 19, 1161–1165 (2013).
pubmed: 23933981
doi: 10.1038/nm.3303
Meuth, S. G. et al. Altered neuronal expression of TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation. Neurosci. Lett. 446, 133–138 (2008).
pubmed: 18824070
doi: 10.1016/j.neulet.2008.09.038
Bittner, S. et al. Expression of K2P5.1 potassium channels on CD4+T lymphocytes correlates with disease activity in rheumatoid arthritis patients. Arthritis Res. Ther. 13, R21 (2011).
pubmed: 21314928
pmcid: 3241365
doi: 10.1186/ar3245
Bittner, S. et al. Upregulation of K2P5.1 potassium channels in multiple sclerosis. Ann. Neurol. 68, 58–69 (2010).
pubmed: 20582984
doi: 10.1002/ana.22010
Kang, D., Mariash, E. & Kim, D. Functional expression of TRESK-2, a new member of the tandem-pore K + channel family. J. Biol. Chem. 279, 28063–28070 (2004).
pubmed: 15123670
doi: 10.1074/jbc.M402940200
Keshavaprasad, B. et al. Species-spicific differences in response to anesthetics and other modulators by the K2P channel TRESK. Anesth. Analg. 101, 1042–1049 (2005).
pubmed: 16192517
doi: 10.1213/01.ane.0000168447.87557.5a
Czirják, G., Tóth, Z. E. & Enyedi, P. The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J. Biol. Chem. 279, 18550–18558 (2004).
pubmed: 14981085
doi: 10.1074/jbc.M312229200
Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).
pubmed: 15928679
doi: 10.1038/nri1632
Czirják, G. & Enyedi, P. Targeting of calcineurin to an NFAT-like docking site is required for the calcium-dependent activation of the background K+ channel, TRESK. J. Biol. Chem. 281, 14677–14682 (2006).
pubmed: 16569637
doi: 10.1074/jbc.M602495200
Lo, W. L., Donermeyer, D. L. & Allen, P. M. A voltage-gated sodium channel is essential for the positive selection of CD4 + T cells. Nat. Immunol. 13, 880–887 (2012).
pubmed: 22842345
pmcid: 3426661
doi: 10.1038/ni.2379
Dobler, T. et al. TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol. 585, 867–879 (2007).
pubmed: 17962323
pmcid: 2375503
doi: 10.1113/jphysiol.2007.145649
Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, 0169–0178 (2007).
doi: 10.1371/journal.pbio.0050038
Dolmetsch, R. E. & Lewis, R. S. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+channels generates [Ca2+]i oscillations in T lyrnphocytes. J. Gen. Physiol. 103, 365–388 (1994).
pubmed: 8195779
doi: 10.1085/jgp.103.3.365
Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).
pubmed: 9126747
doi: 10.1038/386855a0
Feske, S., Skolnik, E. Y. & Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12, 532–547 (2012).
pubmed: 22699833
pmcid: 3670817
doi: 10.1038/nri3233
Vig, M. & Kinet, J. P. Calcium signaling in immune cells. Nat. Immunol. 10, 21–27 (2009).
pubmed: 19088738
pmcid: 2877033
doi: 10.1038/ni.f.220
Ruan, Q. et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).
pubmed: 20064450
pmcid: 2807990
doi: 10.1016/j.immuni.2009.10.006
Li, Y. Y., Huang, S. S., Lee, M. M., Deng, J. S. & Huang, G. J. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol. 25, 332–339 (2015).
pubmed: 25681284
doi: 10.1016/j.intimp.2015.02.002
Saadane, A., Masters, S., DiDonato, J., Li, J. & Berger, M. Parthenolide inhibits IκB kinase, NF-κB activation, and inflammatory response in cystic fibrosis cells and mice. Am. J. Respir. Cell Mol. Biol. 36, 728–736 (2007).
pubmed: 17272824
pmcid: 1899341
doi: 10.1165/rcmb.2006-0323OC
Owen, D. L. et al. Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 20, 195–205 (2019).
pubmed: 30643267
pmcid: 6650268
doi: 10.1038/s41590-018-0289-6
Woronicz, J. D. et al. Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol. Cell. Biol. 15, 6364–6376 (1995).
pubmed: 7565789
pmcid: 230888
doi: 10.1128/MCB.15.11.6364
Cowan, J. E. et al. The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J. Exp. Med. 210, 675–681 (2013).
pubmed: 23530124
pmcid: 3620359
doi: 10.1084/jem.20122070
Caramalho, Í., Nunes-Cabaço, H., Foxall, R. B. & Sousa, A. E. Regulatory T-cell development in the human thymus. Front. Immunol. 6, 395 (2015).
pubmed: 26284077
pmcid: 4522873
doi: 10.3389/fimmu.2015.00395
Andres-Enguix, I. et al. Functional analysis of missense variants in the TRESK (KCNK18) K + channel. Sci. Rep. 2, 237 (2012).
pubmed: 22355750
pmcid: 3266952
doi: 10.1038/srep00237
Kranz, J. et al. Clinical practice guideline: uncomplicated bacterial community-acquired urinary tract infection in adults-epidemiology, diagnosis, treatment, and prevention. Dtsch. Arztebl. Int. 114, 866–873 (2017).
pubmed: 29271346
pmcid: 5763001
Hogan, P. G., Lewis, R. S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28, 491–533 (2010).
pubmed: 20307213
pmcid: 2861828
doi: 10.1146/annurev.immunol.021908.132550
Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA 102, 5138–5143 (2005).
pubmed: 15790681
pmcid: 555574
doi: 10.1073/pnas.0501675102
Kwon, H. K., Chen, H. M., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248 (2017).
pubmed: 28892470
pmcid: 5679728
doi: 10.1038/ni.3835
Vaeth, M. et al. Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 109, 16258–16263 (2012).
pubmed: 22991461
pmcid: 3479579
doi: 10.1073/pnas.1203870109
Bandukwala, H. S. et al. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34, 479–491 (2011).
pubmed: 21458306
pmcid: 3085397
doi: 10.1016/j.immuni.2011.02.017
Li, Q. et al. Constitutive nuclear localization of NFAT in Foxp3 + regulatory T cells independent of calcineurin activity. J. Immunol. 188, 4268–4277 (2012).
pubmed: 22490438
doi: 10.4049/jimmunol.1102376
Paiva, R. S. et al. Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proc. Natl. Acad. Sci. USA 110, 6494–6499 (2013).
pubmed: 23576744
pmcid: 3631617
doi: 10.1073/pnas.1221955110
Bittner, S. & Meuth, S. G. Targeting ion channels for the treatment of autoimmune neuroinflammation. Ther. Adv. Neurol. Disord. 6, 322–336 (2013).
pubmed: 23997817
pmcid: 3755531
doi: 10.1177/1756285613487782
Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).
pubmed: 31541224
pmcid: 7773144
doi: 10.1038/s41573-019-0041-4
Romano, M., Fanelli, G., Albany, C. J., Giganti, G. & Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10, 43 (2019).
pubmed: 30804926
pmcid: 6371029
doi: 10.3389/fimmu.2019.00043
Elias, S. & Rudensky, A. Y. Therapeutic use of regulatory T cells for graft-versus-host disease. Br. J. Haematol. 187, 25–38 (2019).
pubmed: 31418827
pmcid: 8054701
doi: 10.1111/bjh.16157
Qu, Y. et al. The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Transpl. Immunol. 17, 153–161 (2007).
pubmed: 17331841
doi: 10.1016/j.trim.2007.01.002
Pawlitzki, M. et al. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine 56, 102822 (2020).
pubmed: 32535547
pmcid: 7286830
doi: 10.1016/j.ebiom.2020.102822
Ruck, T. et al. CD4+NKG2D+ T cells exhibit enhanced migratory and encephalitogenic properties in neuroinflammation. PLoS ONE 8, e81455 (2013).
pubmed: 24282598
pmcid: 3839937
doi: 10.1371/journal.pone.0081455
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
pubmed: 23287722
pmcid: 3712628
doi: 10.1126/science.1232033
Permanyer, M. et al. Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool. Cell. Mol. Immunol. 18, 398–414 (2021).
pubmed: 33408345
pmcid: 8027001
doi: 10.1038/s41423-020-00599-z
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
doi: 10.1093/bioinformatics/btu638
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).
pubmed: 18024188
doi: 10.1016/j.immuni.2007.09.010
Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).
pubmed: 12952881
pmcid: 403709
doi: 10.1101/gr.772403
Mi, H. et al. PANTHER version 7: Improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204 (2009).
pubmed: 20015972
pmcid: 2808919
doi: 10.1093/nar/gkp1019
Lenhard, B. et al. Identification of conserved regulatory elements by comparative genome analysis. J. Biol. 2, 13 (2003).
pubmed: 12760745
pmcid: 193685
doi: 10.1186/1475-4924-2-13
Alack, K. et al. Profiling of human lymphocytes reveals a specific network of protein kinases modulated by endurance training status. Sci. Rep. 10, 888 (2020).
pubmed: 31964936
pmcid: 6972788
doi: 10.1038/s41598-020-57676-6
Chirumamilla, C. S. et al. Profiling activity of cellular kinases in migrating T-cells. in Methods in Molecular Biology 1930, 99–113 (Humana Press Inc., 2019).
Schwill, M. et al. Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci. Signal. 12, eaau2875 (2019).
pubmed: 30670633
pmcid: 6546113
doi: 10.1126/scisignal.aau2875
Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).
pubmed: 29275977
doi: 10.1016/S1474-4422(17)30470-2
Lengyel, M., Dobolyi, A., Czirják, G. & Enyedi, P. Selective and state-dependent activation of TRESK (K2P18.1) background potassium channel by cloxyquin. Br. J. Pharmacol. 174, 2102–2113 (2017).
pubmed: 28419410
pmcid: 5466531
doi: 10.1111/bph.13821
Hayes, A. F. & Cai, L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behav. Res. Methods 39, 709–722 (2007).
pubmed: 18183883
doi: 10.3758/BF03192961