Concept and application of circulating proteasomes.
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
received:
27
04
2021
accepted:
06
09
2021
revised:
27
08
2021
pubmed:
29
10
2021
medline:
5
4
2022
entrez:
28
10
2021
Statut:
ppublish
Résumé
Proteostasis is primarily a function of protein synthesis and degradation. Although the components and processes involved in intracellular proteostasis have been studied extensively, it is apparent that extracellular proteostasis is equitably crucial for the viability of organisms. The 26S proteasome, a unique ATP-dependent proteolytic complex in eukaryotic cells, contributes to the majority of intracellular proteolysis. Accumulating evidence suggests the presence of intact 20S proteasomes in the circulatory system (c-proteasomes), and similar to other plasma proteins, the levels of these c-proteasomes may vary, potentially reflecting specific pathophysiological conditions. Under normal conditions, the concentration of c-proteasomes has been reported to be in the range of ~0.2-2 μg/mL, which is ~2-4-fold lower than that of functional plasma proteins but markedly higher than that of signaling proteins. The characterization of c-proteasomes, such as their origin, structure, role, and clearance, has been delayed mainly due to technical limitations. In this review, we summarize the current perspectives pertaining to c-proteasomes, focusing on the methodology, including our experimental understanding. We believe that once the pathological relevance of c-proteasomes is revealed, these unique components may be utilized in the diagnosis and prognosis of diverse human diseases.
Identifiants
pubmed: 34707192
doi: 10.1038/s12276-021-00692-x
pii: 10.1038/s12276-021-00692-x
pmc: PMC8568939
doi:
Substances chimiques
Proteins
0
Proteasome Endopeptidase Complex
EC 3.4.25.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1539-1546Informations de copyright
© 2021. The Author(s).
Références
Hershko, A., Ciechanover, A. & Varshavsky, A. Basic Medical Research Award. The ubiquitin system. Nat. Med. 6, 1073–1081 (2000).
pubmed: 11017125
doi: 10.1038/80384
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).
pubmed: 19489727
pmcid: 3431160
doi: 10.1146/annurev.biochem.78.081507.101607
Tanaka, K. The proteasome: overview of structure and functions. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 12–36 (2009).
pubmed: 19145068
pmcid: 3524306
doi: 10.2183/pjab.85.12
Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl Acad. Sci. USA 109, 14870–14875 (2012).
pubmed: 22927375
pmcid: 3443124
doi: 10.1073/pnas.1213333109
Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186–191 (2012).
pubmed: 22237024
pmcid: 3285539
doi: 10.1038/nature10774
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471 (1997).
pubmed: 9087403
doi: 10.1038/386463a0
Choi, W. H. et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat. Commun. 7, 10963 (2016).
pubmed: 26957043
pmcid: 4786872
doi: 10.1038/ncomms10963
Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).
pubmed: 11062564
doi: 10.1038/80992
Zhao, X. & Yang, J. Amyloid-beta peptide is a substrate of the human 20S proteasome. ACS Chem. Neurosci. 1, 655–660 (2010).
pubmed: 21116456
pmcid: 2992454
doi: 10.1021/cn100067e
Ukmar-Godec, T. et al. Proteasomal degradation of the intrinsically disordered protein tau at single-residue resolution. Sci. Adv. 6, eaba3916 (2020).
pubmed: 32832664
pmcid: 7439447
doi: 10.1126/sciadv.aba3916
David, D. C. et al. Proteasomal degradation of tau protein. J. Neurochem 83, 176–185 (2002).
pubmed: 12358741
doi: 10.1046/j.1471-4159.2002.01137.x
Olshina, M. A. et al. Regulation of the 20S Proteasome by a Novel Family of Inhibitory Proteins. Antioxid. Redox Signal. 32, 636–655 (2020).
pubmed: 31903784
doi: 10.1089/ars.2019.7816
Moscovitz, O. et al. The Parkinson’s-associated protein DJ-1 regulates the 20S proteasome. Nat. Commun. 6, 6609 (2015).
pubmed: 25833141
doi: 10.1038/ncomms7609
Li, X. et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol. Cell 26, 831–842 (2007).
pubmed: 17588518
doi: 10.1016/j.molcel.2007.05.028
Touitou, R. et al. A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J. 20, 2367–2375 (2001).
pubmed: 11350925
pmcid: 125454
doi: 10.1093/emboj/20.10.2367
Asher, G., Tsvetkov, P., Kahana, C. & Shaul, Y. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19, 316–321 (2005).
pubmed: 15687255
pmcid: 546509
doi: 10.1101/gad.319905
Davies, K. J. Degradation of oxidized proteins by the 20S proteasome. Biochimie 83, 301–310 (2001).
pubmed: 11295490
doi: 10.1016/S0300-9084(01)01250-0
Shringarpure, R., Grune, T., Mehlhase, J. & Davies, K. J. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J. Biol. Chem. 278, 311–318 (2003).
pubmed: 12401807
doi: 10.1074/jbc.M206279200
Sahu, I. & Glickman, M. H. Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 11, 148 (2021).
pubmed: 33498876
pmcid: 7910952
doi: 10.3390/biom11020148
Sahu, I. et al. Signature activities of 20 S proteasome include degradation of the ubiquitin-tag with the protein under hypoxia. Preprint at https://www.biorxiv.org/content/10.1101/2019.12.20.883942v1 (2019).
Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5, 177–187 (2004).
pubmed: 14990998
doi: 10.1038/nrm1336
Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).
pubmed: 22702725
doi: 10.1080/07391102.2012.675145
Fabre, B. et al. Subcellular distribution and dynamics of active proteasome complexes unraveled by a workflow combining in vivo complex cross-linking and quantitative proteomics. Mol. Cell. Proteom. 12, 687–699 (2013).
doi: 10.1074/mcp.M112.023317
Fabre, B. et al. Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. J. Proteome Res. 13, 3027–3037 (2014).
pubmed: 24804812
doi: 10.1021/pr500193k
Taggart, C. C. et al. Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J. Biol. Chem. 276, 33345–33352 (2001).
pubmed: 11435427
doi: 10.1074/jbc.M103220200
Mayor, T., Sharon, M. & Glickman, M. H. Tuning the proteasome to brighten the end of the journey. Am. J. Physiol. Cell Physiol. 311, C793–C804 (2016).
pubmed: 27605452
pmcid: 5130584
doi: 10.1152/ajpcell.00198.2016
Baugh, J. M., Viktorova, E. G. & Pilipenko, E. V. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 386, 814–827 (2009).
pubmed: 19162040
pmcid: 2649715
doi: 10.1016/j.jmb.2008.12.081
Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
pubmed: 25613900
doi: 10.1126/science.1260419
Wyatt, A. R., Yerbury, J. J., Poon, S. & Wilson, M. R. Therapeutic targets in extracellular protein deposition diseases. Curr. Med. Chem. 16, 2855–2866 (2009).
pubmed: 19689268
doi: 10.2174/092986709788803187
Wada, M. et al. Serum concentration and localization in tumor cells of proteasomes in patients with hematologic malignancy and their pathophysiologic significance. J. Lab Clin. Med. 121, 215–223 (1993).
pubmed: 8433038
Dwivedi, V., Yaniv, K. & Sharon, M. Beyond cells: the extracellular circulating 20S proteasomes. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166041 (2021).
pubmed: 33338594
doi: 10.1016/j.bbadis.2020.166041
Yun, Y. et al. Proteasome activity in the plasma as a novel biomarker in mild cognitive impairment with chronic tinnitus. J. Alzheimers Dis. 78, 195–205 (2020).
pubmed: 32955464
pmcid: 7683073
doi: 10.3233/JAD-200728
Sixt, S. U., Beiderlinden, M., Jennissen, H. P. & Peters, J. Extracellular proteasome in the human alveolar space: a new housekeeping enzyme? Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1280–L1288 (2007).
pubmed: 17220374
doi: 10.1152/ajplung.00140.2006
Hough, R., Pratt, G. & Rechsteiner, M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262, 8303–8313 (1987).
pubmed: 3298229
doi: 10.1016/S0021-9258(18)47564-3
Fujiwara, T. et al. Molecular cloning of cDNA for proteasomes (multicatalytic proteinase complexes) from rat liver: primary structure of the largest component (C2). Biochemistry 28, 7332–7340 (1989).
pubmed: 2819072
doi: 10.1021/bi00444a028
Egerer, K. et al. Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J. Rheumatol. 29, 2045–2052 (2002).
pubmed: 12375310
Jakob, C. et al. Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma. Blood 109, 2100–2105 (2007).
pubmed: 17095627
doi: 10.1182/blood-2006-04-016360
Majetschak, M. et al. Circulating 20S proteasome levels in patients with mixed connective tissue disease and systemic lupus erythematosus. Clin. Vaccin. Immunol. 15, 1489–1493 (2008).
doi: 10.1128/CVI.00187-08
de Martino, M. et al. Serum 20S proteasome is elevated in patients with renal cell carcinoma and associated with poor prognosis. Br. J. Cancer 106, 904–908 (2012).
pubmed: 22294183
pmcid: 3305962
doi: 10.1038/bjc.2012.20
Roth, G. A. et al. Heightened levels of circulating 20S proteasome in critically ill patients. Eur. J. Clin. Invest. 35, 399–403 (2005).
pubmed: 15948901
doi: 10.1111/j.1365-2362.2005.01508.x
Kakurina, G. V., Cheremisina, O. V., Choinzonov, E. L. & Kondakova, I. V. Circulating proteasomes in the pathogenesis of head and neck squamous cell carcinoma. Bull. Exp. Biol. Med. 163, 92–94 (2017).
pubmed: 28577090
doi: 10.1007/s10517-017-3745-7
Lavabre-Bertrand, T. et al. Plasma proteasome level is a potential marker in patients with solid tumors and hemopoietic malignancies. Cancer 92, 2493–2500 (2001).
pubmed: 11745181
doi: 10.1002/1097-0142(20011115)92:10<2493::AID-CNCR1599>3.0.CO;2-F
Dutaud, D. et al. Development and evaluation of a sandwich ELISA for quantification of the 20S proteasome in human plasma. J. Immunol. Methods 260, 183–193 (2002).
pubmed: 11792388
doi: 10.1016/S0022-1759(01)00555-5
Stoebner, P. E. et al. High plasma proteasome levels are detected in patients with metastatic malignant melanoma. Br. J. Dermatol. 152, 948–953 (2005).
pubmed: 15888151
doi: 10.1111/j.1365-2133.2005.06487.x
Henry, L. et al. Plasma proteasome level is a reliable early marker of malignant transformation of liver cirrhosis. Gut 58, 833–838 (2009).
pubmed: 19201777
doi: 10.1136/gut.2008.157016
Henry, L. et al. Clinical use of p-proteasome in discriminating metastatic melanoma patients: comparative study with LDH, MIA and S100B protein. Int. J. Cancer 133, 142–148 (2013).
pubmed: 23238767
doi: 10.1002/ijc.27991
Ma, W. et al. Enzymatic activity of circulating proteasomes correlates with clinical behavior in patients with chronic lymphocytic leukemia. Cancer 112, 1306–1312 (2008).
pubmed: 18224667
doi: 10.1002/cncr.23301
Ma, W. et al. Proteasome enzymatic activities in plasma as risk stratification of patients with acute myeloid leukemia and advanced-stage myelodysplastic syndrome. Clin. Cancer Res. 15, 3820–3826 (2009).
pubmed: 19458051
pmcid: 4091712
doi: 10.1158/1078-0432.CCR-08-3034
Kisselev, A. F. & Goldberg, A. L. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol. 398, 364–378 (2005).
pubmed: 16275343
doi: 10.1016/S0076-6879(05)98030-0
Lee, J. H. & Lee, M. J. Isolation and characterization of RNA aptamers against a proteasome-associated deubiquitylating enzyme UCH37. Chembiochem 18, 171–175 (2017).
pubmed: 27930845
doi: 10.1002/cbic.201600515
Lee, J. H. et al. Facilitated tau degradation by USP14 aptamers via enhanced proteasome activity. Sci. Rep. 5, 10757 (2015).
pubmed: 26041011
pmcid: 4455164
doi: 10.1038/srep10757
Lam, Y. A., Huang, J. W. & Showole, O. The synthesis and proteasomal degradation of a model substrate Ub5DHFR. Methods Enzymol. 398, 379–390 (2005).
pubmed: 16275344
doi: 10.1016/S0076-6879(05)98031-2
Tylicka, M. et al. Proteasome activity and C-reactive protein concentration in the course of inflammatory reaction in relation to the type of abdominal operation and the surgical technique used. Mediators Inflamm. 2018, 2469098 (2018).
pubmed: 30405319
pmcid: 6204193
doi: 10.1155/2018/2469098
Majetschak, M. et al. Circulating proteasomes after burn injury. J. Burn Care Res. 31, 243–250 (2010).
pubmed: 20182370
doi: 10.1097/BCR.0b013e3181d0f55d
Heubner, M. et al. The prognostic impact of circulating proteasome concentrations in patients with epithelial ovarian cancer. Gynecol. Oncol. 120, 233–238 (2011).
pubmed: 21075439
doi: 10.1016/j.ygyno.2010.10.014
Hoffmann, O. et al. Circulating 20S proteasome in patients with non-metastasized breast cancer. Anticancer Res. 31, 2197–2201 (2011).
pubmed: 21737641
Fukasawa, H. et al. Circulating 20S proteasome is independently associated with abdominal muscle mass in hemodialysis patients. PLoS ONE 10, e0121352 (2015).
pubmed: 25803510
pmcid: 4372611
doi: 10.1371/journal.pone.0121352
Manasanch, E. E. et al. Enzymatic activities of circulating plasma proteasomes in newly diagnosed multiple myeloma patients treated with carfilzomib, lenalidomide and dexamethasone. Leuk. Lymphoma 58, 639–645 (2017).
pubmed: 27687480
doi: 10.1080/10428194.2016.1214953
Oldziej, A. et al. Assessment of proteasome concentration and chymotrypsin-like activity in plasma of patients with newly diagnosed multiple myeloma. Leuk. Res. 38, 925–930 (2014).
pubmed: 24923860
doi: 10.1016/j.leukres.2014.05.008
Tylicka, M., Matuszczak, E., Debek, W., Hermanowicz, A. & Ostrowska, H. Circulating proteasome activity following mild head injury in children. Childs Nerv. Syst. 30, 1191–1196 (2014).
pubmed: 24700339
pmcid: 4072065
doi: 10.1007/s00381-014-2409-4
Matuszczak, E. et al. Concentration of proteasome in the blood plasma of children with acute appendicitis, before and after surgery, and its correlation with CRP. World J. Surg. 42, 2259–2264 (2018).
pubmed: 29264727
doi: 10.1007/s00268-017-4407-7
Matuszczak, E. et al. Immunoproteasome in the plasma of pediatric patients with moderate and major burns, and its correlation with proteasome and UCHL1 measured by SPR IMaging Biosensors. J. Burn Care Res 39, 948–953 (2018).
pubmed: 29534191
doi: 10.1093/jbcr/iry011
Aniort, J. et al. Circulating 20S proteasome for assessing protein energy wasting syndrome in hemodialysis patients. PLoS ONE 15, e0236948 (2020).
pubmed: 32735636
pmcid: 7394422
doi: 10.1371/journal.pone.0236948
Zoeger, A., Blau, M., Egerer, K., Feist, E. & Dahlmann, B. Circulating proteasomes are functional and have a subtype pattern distinct from 20S proteasomes in major blood cells. Clin. Chem. 52, 2079–2086 (2006).
pubmed: 16990418
doi: 10.1373/clinchem.2006.072496
Kumar Deshmukh, F., Yaffe, D., Olshina, M. A., Ben-Nissan, G. & Sharon, M. The contribution of the 20S proteasome to proteostasis. Biomolecules 9, 190 (2019).
pmcid: 6571867
doi: 10.3390/biom9050190
Zetterberg, H. & Blennow, K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol. Neurodegener. 16, 10 (2021).
pubmed: 33608044
pmcid: 7893769
doi: 10.1186/s13024-021-00430-x
Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genomics 15, 38–51 (2014).
pubmed: 24653662
pmcid: 3958958
doi: 10.2174/138920291501140306113344
Bochmann, I. et al. T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes. J. Cell. Mol. Med. 18, 59–68 (2014).
pubmed: 24304442
doi: 10.1111/jcmm.12160
Lai, R. C. et al. Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int. J. Proteom. 2012, 971907 (2012).
doi: 10.1155/2012/971907
Bec, N. et al. Proteasome 19S RP and translation preinitiation complexes are secreted within exosomes upon serum starvation. Traffic 20, 516–536 (2019).
pubmed: 31042005
doi: 10.1111/tra.12653
Choi, W. H. et al. Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes. Proc. Natl Acad. Sci. USA 117, 19190–19200 (2020).
pubmed: 32723828
pmcid: 7430983
doi: 10.1073/pnas.1920327117
Lee, J. H., Park, S., Kim, E. & Lee, M. J. Negative-feedback coordination between proteasomal activity and autophagic flux. Autophagy 15, 726–728 (2019).
pubmed: 30689498
pmcid: 6526830
doi: 10.1080/15548627.2019.1569917
Pack, C. G. et al. Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat. Commun. 5, 3396 (2014).
pubmed: 24598877
doi: 10.1038/ncomms4396