A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
10 2021
Historique:
received: 04 06 2021
accepted: 13 08 2021
entrez: 28 10 2021
pubmed: 29 10 2021
medline: 29 10 2021
Statut: ppublish

Résumé

Measurements of the atmospheric carbon (C) and oxygen (O) relative to hydrogen (H) in hot Jupiters (relative to their host stars) provide insight into their formation location and subsequent orbital migration

Identifiants

pubmed: 34707303
doi: 10.1038/s41586-021-03912-6
pii: 10.1038/s41586-021-03912-6
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

580-584

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Mordasini, C., van Boekel, R., Molliere, P., Henning, T. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).
doi: 10.3847/0004-637X/832/1/41
Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Ann. Rev. Astron. Astrophys. 57, 617–663 (2019).
doi: 10.1146/annurev-astro-081817-051846
Tsiaras, A. et al. A population study of gaseous exoplanets. Astron. J. 155, 156 (2018).
doi: 10.3847/1538-3881/aaaf75
Welbanks, L. et al. Mass-metallicity trends in transiting exoplanets from atmospheric abundances of H
doi: 10.3847/2041-8213/ab5a89
Gandhi, S., Madhusudhan, N., Hawker, G. & Piette, A. HyDRA-H: simultaneous hybrid retrieval of exoplanetary emission spectra. Astron. J. 158, 228 (2019).
doi: 10.3847/1538-3881/ab4efc
Pelletier, S. et al. Where is the water? Jupiter-like C/H ratio but strong H
doi: 10.3847/1538-3881/ac0428
Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astron. J. 157, 114 (2019).
doi: 10.3847/1538-3881/aaffd3
Maxted, P. F. L. et al. WASP-77 Ab: a transiting hot Jupiter planet in a wide binary system. Pub. Astron. Soc. Pac. 125, 48 (2013).
doi: 10.1086/669231
Park, C. et al. Design and early performance of IGRINS (immersion grating infrared spectrometer). In Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Ramsay, S. K., McLean, I. S. & Takami, H.) 91471D (2014).
Mace, G. et al. IGRINS at the Discovery Channel Telescope and Gemini South. In Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds. Evans, C. J., Simard, L. & Takami, H.) 107020Q (2018).
Lee, Jae-Joon & Gullikson, Kevin. PLP: v2.1 alpha 3 [Data set]. Zenodo https://doi.org/10.5281/zenodo.56067 (2016)
de Kok, R. J. et al. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. J. 554, A82 (2013).
Brogi, M. et al. The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486, 502–504 (2012).
doi: 10.1038/nature11161 pubmed: 22739313
Birkby, J. L. et al. Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 µm. Mon. Not. R. Astron. Soc. 436, L35–L39 (2013).
doi: 10.1093/mnrasl/slt107
Lockwood, A. et al. Near-IR direct detection of water vapor in Tau Boötis b. Astrophys. J. Lett. 783, L29 (2014).
Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).
doi: 10.1038/nature09111 pubmed: 20577209
Moses, J. I. Chemical kinetics on extrasolar planets. Philos. Trans. R. Soc. A 372, 20130073 (2014).
doi: 10.1098/rsta.2013.0073
Parmentier, V., Fortney, J. J., Showman, A. P., Morley, C. & Marley, M. S. Transitions in the cloud composition of hot Jupiters. Astrophys. J. 828, 22 (2016).
doi: 10.3847/0004-637X/828/1/22
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).
doi: 10.1146/annurev.astro.46.060407.145222
Öberg, K. I., Murray-Clay, R. & Bergin, E. A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, L16 (2011).
doi: 10.1088/2041-8205/743/1/L16
Madhusudhan, N., Amin, M. A. & Kennedy, G. M. Towards chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014)
doi: 10.1088/2041-8205/794/1/L12
Madhusudhan, N., Bitsch, B., Johansen, A. & Eriksson, L. Atmospheric signatures of giant exoplanet formation by pebble accretion. Mon. Not. R. Astron. Soc. 469, 4102–4115 (2017).
doi: 10.1093/mnras/stx1139
Booth, R. A., Clarke, C. J., Madhusudhan, N. & Ilee, J. D. Chemical enrichment of giant planets and discs due to pebble drift. Mon. Not. R. Astron. Soc. 469, 3994–4011 (2017).
doi: 10.1093/mnras/stx1103
Kreidberg, L. et al. A precise water abundance measurement for the hot Jupiter WASP-43b. Astrophys. J. Lett. 739, L27 (2014).
doi: 10.1088/2041-8205/793/2/L27
Li, C. et al. The water abundance in Jupiter’s equatorial zone. Nat. Astron. 4, 609–616 (2020).
doi: 10.1038/s41550-020-1009-3
Atreya, S. K. et al. The origin and evolution of Saturn, with exoplanet perspective. Preprint at https://arxiv.org/abs/1606.04510 (2016).
Thorngren, D. & Fortney, J. J. Connecting giant planet atmosphere and interior modeling: constraints on atmospheric metal enrichment. Astrophys. J. Lett. 874, L31 (2019).
doi: 10.3847/2041-8213/ab1137
Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999).
doi: 10.1086/306811
Giacobbe, P. et al. Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere. Nature 592, 205–208 (2021).
doi: 10.1038/s41586-021-03381-x pubmed: 33828321
Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).
doi: 10.1088/0004-637X/775/2/137
Line, M. R. et al. Uniform atmospheric retrieval analysis of ultracool dwarfs. II. Properties of 11 T dwarfs. Astrophys. J. 848, 83 (2017).
doi: 10.3847/1538-4357/aa7ff0
Tennyson, J. et al. The 2020 release of the ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 255, 107228 (2020).
doi: 10.1016/j.jqsrt.2020.107228
Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).
doi: 10.1016/j.jqsrt.2010.05.001
Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).
doi: 10.3847/1538-4365/ab7a1a
Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X
doi: 10.1088/0067-0049/216/1/15
Coles, P. A., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – XXXV. A rotation-vibration line list for hot ammonia. Mon. Not. R. Astro. Soc. 490, 4638–4647 (2019).
Azzam, A. A. A., Tennyson, J., Yurchenko, S. N. & Naumenko, O. V. ExoMol molecular line lists - XVI. The rotation-vibration spectrum of hot H
doi: 10.1093/mnras/stw1133
Barber, R. J. et al. ExoMol line lists - III. An improved hot rotation-vibration line list for HCN and HNC. Mon. Not. R. Astron. Soc. 437, 1828–1835 (2014).
doi: 10.1093/mnras/stt2011
Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).
doi: 10.1016/j.icarus.2019.02.034
Grimm, S. L. & Heng, K. HELIOS-K: an ultrafast, open-source opacity calculator for radiative transfer. Astrophys. J. 808, 182 (2015).
doi: 10.1088/0004-637X/808/2/182
Grimm, S. L. et al. HELIOS-K 2.0 opacity calculator and open-source opacity database for exoplanetary atmospheres. Astrophys. J. Suppl. 253, 30 (2021).
doi: 10.3847/1538-4365/abd773
Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).
doi: 10.1093/mnras/sty1877
Gharib-Nezhad, E. et al. EXOPLINES: molecular absorption cross-section database for brown dwarf and giant exoplanet atmospheres. Astrophys. J. Suppl. Ser. 254, 34 (2021)
doi: 10.3847/1538-4365/abf504
Madhusudhan, N. & Seager, S. A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009).
doi: 10.1088/0004-637X/707/1/24
Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014)
doi: 10.1051/0004-6361/201322971
Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).
doi: 10.1111/j.1365-2966.2009.14548.x
Zucker, S. Cross-correlation and maximum-likelihood analysis: a new approach to combiningcross-correlation functions. Mon. Not. R. Astron. Soc. 342, 1291–1298 (2003).
doi: 10.1046/j.1365-8711.2003.06633.x
Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).
doi: 10.1093/mnras/staa228
Line, M. R., Knutson, H., Wolf, A. S. & Yung, Y. L. A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. Astrophys. J. 783, 70 (2014).
doi: 10.1088/0004-637X/783/2/70
Hoeijmakers, H. J. et al. Atomic iron and titanium in the atmosphere of the exoplanet KELT9b. Nature 560, 453–455 (2018).
pubmed: 30111838 pmcid: 6322651 doi: 10.1038/s41586-018-0401-y
Brogi, M. et al. Detection of molecular absorption in the dayside of exoplanet 51 Pegasi b? Astrophys. J. 767, 27 (2013).
doi: 10.1088/0004-637X/767/1/27
Beltz, H., Rauscher, E., Brogi, M. & Kempton, E. M. R. A significant increase in detection of high-resolution emission spectra using a three-dimensional atmospheric model of a hot Jupiter. Astron. J. 161, 1 (2021).
doi: 10.3847/1538-3881/abb67b
Piskorz, D. et al. Ground- and space-based detection of the thermal emission spectrum of the transiting hot Jupiter KELT-2Ab. Astron. J. 156, 133 (2018).
doi: 10.3847/1538-3881/aad781
Gharib-Nezhad, E. & Line, M. R. The influence of H
doi: 10.3847/1538-4357/aafb7b
Arcangeli, J. et al. H
doi: 10.3847/2041-8213/aab272
Perez-Becker, D. & Showman, A. P. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134 (2013).
doi: 10.1088/0004-637X/776/2/134
Tsai, S.-M. et al. Toward consistent modeling of atmospheric chemistry and dynamics in exoplanets: validation and generalization of the chemical relaxation method. Astrophys. J. 862, 31 (2018).
doi: 10.3847/1538-4357/aac834
Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).
doi: 10.1086/528370
Parmentier, V., Showman, A. P. & Fortney, J. J. The cloudy shape of hot Jupiter thermal phase curves. Mon. Not. R. Astron. Soc. 501, 78–108 (2021).
doi: 10.1093/mnras/staa3418
Fortney, J. J. et al. A framework for characterizing the atmospheres of low-mass low density transiting planets. Astrophys. J. 775, 80 (2013).
doi: 10.1088/0004-637X/775/1/80
Pinhas, A., Madhusudhan, N., Gandhi, S. & MacDonald, R. H
doi: 10.1093/mnras/sty2544
Fisher, C. & Heng, K. Retrieval analysis of 38 WFC3 transmission spectra and resolution ofthe normalization degeneracy. Mon. Not. R. Astron. Soc. 481, 4698–4727 (2018).
doi: 10.1093/mnras/sty2550
Feng, Y. K. et al. The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra. Astrophys. J. 829, 52 (2016).
doi: 10.3847/0004-637X/829/1/52
Line, M. R. et al. Information content of exoplanetary transit spectra: an initial look. Astrophys. J. 749, 93 (2012).
doi: 10.1088/0004-637X/749/1/93
Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010).
doi: 10.1051/0004-6361/200913396
Gandhi, S. et al. Molecular cross-sections for high-resolution spectroscopy of super-Earths, warm Neptunes, and hot Jupiters. Mon. Not. R. Astron. Soc. 495, 224–237 (2020).
doi: 10.1093/mnras/staa981
Woods, P. M. & Willacy, K. Carbon isotope fractionation in protoplanetary disks. Astrophys. J. 693, 1360–1378 (2009).
doi: 10.1088/0004-637X/693/2/1360
Marboeuf, U., Thiabaud, A., Alibert, Y. & Benz, W. Isotopic ratios D/H and
doi: 10.1093/mnras/stx3315
Molliere, P. & Snellen, I. A. G. Detecting isotopologues in exoplanet atmospheres using ground-based high-dispersion spectroscopy. Astron. Astrophys. 622, A139 (2019).
doi: 10.1051/0004-6361/201834169

Auteurs

Michael R Line (MR)

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA. mrline@asu.edu.
NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, WA, USA. mrline@asu.edu.

Matteo Brogi (M)

Department of Physics, University of Warwick, Coventry, UK.
Centre for Exoplanets and Habitability, University of Warwick, Coventry, UK.
INAF-Osservatorio Astrofisico di Torino, Turin, Italy.

Jacob L Bean (JL)

Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA.

Siddharth Gandhi (S)

Department of Physics, University of Warwick, Coventry, UK.
Centre for Exoplanets and Habitability, University of Warwick, Coventry, UK.

Joseph Zalesky (J)

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.

Vivien Parmentier (V)

Atmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.

Peter Smith (P)

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.

Gregory N Mace (GN)

Department of Astronomy, University of Texas at Austin, Austin, TX, USA.

Megan Mansfield (M)

Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA.

Eliza M-R Kempton (EM)

Department of Astronomy, University of Maryland, College Park, MD, USA.

Jonathan J Fortney (JJ)

Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA.

Evgenya Shkolnik (E)

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.
NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, WA, USA.

Jennifer Patience (J)

School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.

Emily Rauscher (E)

Department of Astronomy, University of Michigan, Ann Arbor, MI, USA.

Jean-Michel Désert (JM)

Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands.

Joost P Wardenier (JP)

Atmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.

Classifications MeSH