Usefulness of the CONUT index upon hospital admission as a potential prognostic indicator of COVID-19 health outcomes.


Journal

Chinese medical journal
ISSN: 2542-5641
Titre abrégé: Chin Med J (Engl)
Pays: China
ID NLM: 7513795

Informations de publication

Date de publication:
26 Oct 2021
Historique:
pubmed: 30 10 2021
medline: 19 1 2022
entrez: 29 10 2021
Statut: epublish

Résumé

In-hospital mortality in patients with coronavirus disease 2019 (COVID-19) is high. Simple prognostic indices are needed to identify patients at high-risk of COVID-19 health outcomes. We aimed to determine the usefulness of the CONtrolling NUTritional status (CONUT) index as a potential prognostic indicator of mortality in COVID-19 patients upon hospital admission. Our study design is of a retrospective observational study in a large cohort of COVID-19 patients. In addition to descriptive statistics, a Kaplan-Meier mortality analysis and a Cox regression were performed, as well as receiver operating curve (ROC). From February 5, 2020 to January 21, 2021, there was a total of 2969 admissions for COVID-19 at our hospital, corresponding to 2844 patients. Overall, baseline (within 4 days of admission) CONUT index could be scored for 1627 (57.2%) patients. Patients' age was 67.3 ± 16.5 years and 44.9% were women. The CONUT severity distribution was: 194 (11.9%) normal (0-1); 769 (47.2%) light (2-4); 585 (35.9%) moderate (5-8); and 79 (4.9%) severe (9-12). Mortality of 30 days after admission was 3.1% in patients with normal risk CONUT, 9.0% light, 22.7% moderate, and 40.5% in those with severe CONUT (P < 0.05). An increased risk of death associated with a greater baseline CONUT stage was sustained in a multivariable Cox regression model (P < 0.05). An increasing baseline CONUT stage was associated with a longer duration of admission, a greater requirement for the use of non-invasive and invasive mechanical ventilation, and other clinical outcomes (all P < 0.05). The ROC of CONUT for mortality had an area under the curve (AUC) and 95% confidence interval of 0.711 (0.676-0746). The CONUT index upon admission is potentially a reliable and independent prognostic indicator of mortality and length of hospitalization in COVID-19 patients.

Sections du résumé

BACKGROUND BACKGROUND
In-hospital mortality in patients with coronavirus disease 2019 (COVID-19) is high. Simple prognostic indices are needed to identify patients at high-risk of COVID-19 health outcomes. We aimed to determine the usefulness of the CONtrolling NUTritional status (CONUT) index as a potential prognostic indicator of mortality in COVID-19 patients upon hospital admission.
METHODS METHODS
Our study design is of a retrospective observational study in a large cohort of COVID-19 patients. In addition to descriptive statistics, a Kaplan-Meier mortality analysis and a Cox regression were performed, as well as receiver operating curve (ROC).
RESULTS RESULTS
From February 5, 2020 to January 21, 2021, there was a total of 2969 admissions for COVID-19 at our hospital, corresponding to 2844 patients. Overall, baseline (within 4 days of admission) CONUT index could be scored for 1627 (57.2%) patients. Patients' age was 67.3 ± 16.5 years and 44.9% were women. The CONUT severity distribution was: 194 (11.9%) normal (0-1); 769 (47.2%) light (2-4); 585 (35.9%) moderate (5-8); and 79 (4.9%) severe (9-12). Mortality of 30 days after admission was 3.1% in patients with normal risk CONUT, 9.0% light, 22.7% moderate, and 40.5% in those with severe CONUT (P < 0.05). An increased risk of death associated with a greater baseline CONUT stage was sustained in a multivariable Cox regression model (P < 0.05). An increasing baseline CONUT stage was associated with a longer duration of admission, a greater requirement for the use of non-invasive and invasive mechanical ventilation, and other clinical outcomes (all P < 0.05). The ROC of CONUT for mortality had an area under the curve (AUC) and 95% confidence interval of 0.711 (0.676-0746).
CONCLUSION CONCLUSIONS
The CONUT index upon admission is potentially a reliable and independent prognostic indicator of mortality and length of hospitalization in COVID-19 patients.

Identifiants

pubmed: 34711718
doi: 10.1097/CM9.0000000000001798
pii: 00029330-202201200-00008
pmc: PMC8769140
doi:

Types de publication

Journal Article Observational Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

187-193

Informations de copyright

Copyright © 2022 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.

Références

Muller JE, Nathan DG. COVID-19, nuclear war, and global warming: lessons for our vulnerable world. Lancet 2020; 395:1967–1968. doi: 10.1016/S0140-6736(20)31379-9.
doi: 10.1016/S0140-6736(20)31379-9
Zheng YL, He YK, Ma XQ, Gao ZC. Feasibility of coronavirus disease 2019 eradication. Chin Med J 2020; 133:1387–1389. doi: 10.1097/CM9.0000000000000936.
doi: 10.1097/CM9.0000000000000936
Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ 2020; 369:m1328doi: 10.1136/bmj.m1328.
doi: 10.1136/bmj.m1328
Marin BG, Aghagoli G, Lavine K, Yang L, Siff EJ, Chiang SS, et al. Predictors of COVID-19 severity: a literature review. Rev Med Virol 2021; 31:1–10. doi: 10.1002/rmv.2146.
doi: 10.1002/rmv.2146
Sun Y, Dong Y, Wang L, Xie H, Li B, Chang C. Characteristics and prognostic factors of disease severity in patients with COVID-19: the Beijing experience. J Autoimmun 2020; 112:102473doi: 10.1016/j.jaut.2020.102473.
doi: 10.1016/j.jaut.2020.102473
de Ulíbarri JI, González-Madroño A, de Villar NGP, González P, González B, Mancha A, et al. CONUT: a tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp 2005; 20:38–45.
Liu W, Tao ZW, Wang L, Yuan ML, Liu K, Zhou L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J 2020; 133:1032–1038. doi: 10.1097/CM9.0000000000000775.
doi: 10.1097/CM9.0000000000000775
Blake H, Bermingham F, Johnson G, Tabner A. Mitigating the psychological impact of COVID-19 on healthcare workers: a digital learning package. Int J Environ Res Public Health 2020; 17:2997doi: 10.3390/ijerph17092997.
doi: 10.3390/ijerph17092997
Chen Q, Liang M, Li Y, Guo J, Fei D, Wang L, et al. Mental health care for medical staff in China during the COVID-19 outbreak. Lancet Psychiatry 2020; 7:e15–e16. doi: 10.1016/S2215-0366(20)30078-X.
doi: 10.1016/S2215-0366(20)30078-X
Deng Y, Liu W, Liu K, Fang YY, Shang J, Zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin Med J 2020; 133:1261–1267. doi: 10.1097/CM9.0000000000000824.
doi: 10.1097/CM9.0000000000000824
Kuroda D, Sawayama H, Kurashige J, Iwatsuki M, Eto T, Tokunaga R, et al. Controlling Nutritional Status (CONUT) score is a prognostic marker for gastric cancer patients after curative resection. Gastric Cancer 2018; 21:204–212. doi: 10.1007/s10120-017-0744-3.
doi: 10.1007/s10120-017-0744-3
Okamoto S, Ureshino H, Kidoguchi K, Kusaba K, Kizuka-Sano H, Sano H, et al. Clinical impact of the CONUT score in patients with multiple myeloma. Ann Hematol 2020; 99:113–119. doi: 10.1007/s00277-019-03844-2.
doi: 10.1007/s00277-019-03844-2
Yilmaz A, Tekin SB, Bilici M, Yilmaz H. The Significance of Controlling Nutritional Status (CONUT) score as a novel prognostic parameter in small cell lung cancer. Lung 2020; 198:695–704. doi: 10.1007/s00408-020-00361-2.
doi: 10.1007/s00408-020-00361-2
Kato T, Yaku H, Morimoto T, Inuzuka Y, Tamaki Y, Yamamoto E, et al. Association with Controlling Nutritional Status (CONUT) score and in-hospital mortality and infection in acute heart failure. Sci Rep 2020; 10:3320doi: 10.1038/s41598-020-60404-9.
doi: 10.1038/s41598-020-60404-9
Wei C, Liu Y, Li Y, Zhang Y, Zhong M, Meng X. Evaluation of the nutritional status in patients with COVID-19. J Clin Biochem Nutr 2020; 67:116–121. doi: 10.3164/jcbn.20-91.
doi: 10.3164/jcbn.20-91
Chen L, Zhao Y, Du X, Liu Y, Chen J, Peng L, et al. Comparison of the clinical implications among two different nutritional indices in hopitalized patients with COVID-19. medRxiv 2020; 04.28.20082644. doi: 10.1101/2020.04.28.20082644.
doi: 10.1101/2020.04.28.20082644
Wang R, He M, Yue J, Bai L, Liu D, Huang Z, et al. CONUT score is associated with mortality in patients with COVID-19: a retrospective study in Wuhan. PREPRINT (Version 1) available at Research Square 2020; [ https://doi.org/10.21203/rs.3.rs-32889/v1 ].
doi: 10.21203/rs.3.rs-32889/v1
Song F, Ma H, Wang S, Qin T, Xu Q, Yuan H, et al. Nutritional screening based on objective indices at admission predicts in-hospital mortality in patients with COVID-19. PREPRINT (Version 1) available at Research Square 2020; [ https://doi.org/10.21203/rs.3.rs-108125/v1 ].
doi: 10.21203/rs.3.rs-108125/v1
Zhou J, Ma Y, Liu Y, Xiang Y, Tao C, Yu H, et al. A correlation analysis between the nutritional status and prognosis of COVID-19 patients. J Nutr Health Aging 2021; 25:84–93. doi: 10.1007/s12603-020-1457-6.
doi: 10.1007/s12603-020-1457-6
Rodriguez D, Guerrero M, Maldonado M, Veintimilla DR, Tapia MG, Moran SH, et al. Recommendations in the nutritional treatment for cancer patients before Covid-19. J Health Med Sci 2020; 6:303–314.
Piñera M, de Esteban C, Rodríguez A, Arrieta-Blanco F. Grupo de Trabajo de Nutricion de Somamfyc. Recomendaciones para la prevención de la desnutrición en pacientes COVID 19 en seguimiento por Atencion Primaria: role of CONUT. Aten Primaria 2021; 53:101948doi: 10.1016/j.aprim.2020.07.009.
doi: 10.1016/j.aprim.2020.07.009
Ya-Li Z, Yu-Kun H, Xin-Qian M, Zhan-Cheng G. Feasibility of coronavirus disease 2019 eradication. Chin Med J 2020; 133:1387–1389. doi: 10.1097/CM9.0000000000000936.
doi: 10.1097/CM9.0000000000000936
Oliu-Barton M, Pradelski BSR, Aghion P, Artus P, Kickbusch I, Lazarus JV, et al. SARS-CoV-2 elimination, not mitigation, creates best outcomes for health, the economy, and civil liberties. Lancet 2021; 397:2234–2236. doi: 10.1016/S0140-6736(21)00978-8.
doi: 10.1016/S0140-6736(21)00978-8

Auteurs

Adrián K Bengelloun (AK)

Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.

Guillermo J Ortega (GJ)

Unidad de Análisis de Datos, Instituto de Investigación Sanitaria del Hospital de la Princesa, Madrid, Spain.

Julio Ancochea (J)

Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
Servicios de Neumología, Admisión y Documentación Clínica, Cuidados Intensivos y Nutrición y Dietética; Hospital Universitario de La Princesa, Madrid, Spain.
Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, España, Spain.

Ancor Sanz-Garcia (A)

Unidad de Análisis de Datos, Instituto de Investigación Sanitaria del Hospital de la Princesa, Madrid, Spain.

Diego A Rodríguez-Serrano (DA)

Servicios de Neumología, Admisión y Documentación Clínica, Cuidados Intensivos y Nutrición y Dietética; Hospital Universitario de La Princesa, Madrid, Spain.

Guillermo Fernández-Jiménez (G)

Servicios de Neumología, Admisión y Documentación Clínica, Cuidados Intensivos y Nutrición y Dietética; Hospital Universitario de La Princesa, Madrid, Spain.

Rosa Girón (R)

Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
Servicios de Neumología, Admisión y Documentación Clínica, Cuidados Intensivos y Nutrición y Dietética; Hospital Universitario de La Princesa, Madrid, Spain.
Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, España, Spain.

Elena Ávalos (E)

Servicios de Neumología, Admisión y Documentación Clínica, Cuidados Intensivos y Nutrición y Dietética; Hospital Universitario de La Princesa, Madrid, Spain.

Joan B Soriano (JB)

Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
Servicios de Neumología, Admisión y Documentación Clínica, Cuidados Intensivos y Nutrición y Dietética; Hospital Universitario de La Princesa, Madrid, Spain.
Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, España, Spain.

J Ignacio de Ulíbarri (JI)

Servicios de Neumología, Admisión y Documentación Clínica, Cuidados Intensivos y Nutrición y Dietética; Hospital Universitario de La Princesa, Madrid, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH