The stability of cerebrovascular CO
cerebrovascular reactivity
internal carotid artery
middle cerebral artery
Journal
Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
13
08
2021
accepted:
14
10
2021
pubmed:
4
11
2021
medline:
1
4
2022
entrez:
3
11
2021
Statut:
ppublish
Résumé
What is the central question of this study? During a steady-state cerebrovascular CO This study assessed cerebrovascular CO
Substances chimiques
Carbon Dioxide
142M471B3J
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2542-2555Informations de copyright
© 2021 The Authors. Experimental Physiology © 2021 The Physiological Society.
Références
Ainslie, P. N., & Duffin, J. (2009). Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: Mechanisms of regulation, measurement, and interpretation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 296, R1473-R1495. https://doi.org/10.1152/ajpregu.91008.2008
Black, M. A., Cable, N. T., Thijssen, D. H. J., & Green, D. J. (2008). Importance of measuring the time course of flow-mediated dilatation in humans. Hypertension, 51, 203-210. https://doi.org/10.1161/HYPERTENSIONAHA.107.101014
Brothers, R. M., & Zhang, R. (2016). CrossTalk opposing view: The middle cerebral artery diameter does not change during alterations in arterial blood gases and blood pressure. Journal of Physiology, 594, 4077-4079. https://doi.org/10.1113/JP271884
Burley, C. V., Francis, S. T., Thomas, K. N., Whittaker, A. C., Lucas, S. J. E., & Mullinger, K. J. (2021). Contrasting measures of cerebrovascular reactivity between MRI and Doppler: A cross-sectional study of younger and older healthy individuals. Frontiers in Physiology 12, 1-17. https://doi.org/10.3389/fphys.2021.656746
Burley, C. V., Lucas, R. A. I., Whittaker, A. C., Mullinger, K., & Lucas, S. J. E. (2020). The CO2 stimulus duration and steady-state time point used for data extraction alters the cerebrovascular reactivity outcome measure. Experimental Physiology, 105, 893-903. https://doi.org/10.1113/EP087883
Carr, J., Caldwell, H. G., & Ainslie, P. N. (2021). Cerebral blood flow, cerebrovascular reactivity, and their influence on ventilatory sensitivity. Experimental Physiology, 106, 1425-1448. https://doi.org/10.1113/EP089446
Carter, H. H., Atkinson, C. L., Heinonen, I. H. A., Haynes, A., Robey, E., Smith, K. J., Ainslie, P. N., Hoiland, R. L., & Green, D. J. (2016). Evidence for shear stress-mediated dilation of the internal carotid artery in humans. Hypertension, 68, 1217-1224. https://doi.org/10.1161/HYPERTENSIONAHA.116.07698
Coverdale, N. S., Lalande, S., Perrotta, A., & Shoemaker, J. K. (2015). Heterogeneous patterns of vasoreactivity in the middle cerebral and internal carotid arteries. American Journal of Physiology. Heart and Circulatory Physiology, 308, H1030-H1038. https://doi.org/10.1152/ajpheart.00761.2014
Duffin, J. (2011). Measuring the respiratory chemoreflexes in humans. Respiratory Physiology & Neurobiology, 177, 71-79.
Faraci, F. M., & Heistad, D. D. (1990). Regulation of large cerebral arteries and cerebral microsvascular pressure. Circulation Research, 66, 8-17. https://doi.org/10.1161/01.RES.66.1.8
Faraci, F. M., Mayhan, W. G., Schmid, P. G., & Heistad, D. D. (1988). Effects of arginine vasopressin on cerebral microvascular pressure. American Journal of Physiology. Heart and Circulatory Physiology, 255, H70-H76. https://doi.org/10.1152/ajpheart.1988.255.1.H70
Fierstra, J., Sobczyk, O., Battisti-Charbonney, A., Mandell, D. M., Poublanc, J., Crawley, A. P., Mikulis, D. J., Duffin, J., & Fisher, J. A. (2013). Measuring cerebrovascular reactivity: What stimulus to use? Journal of Physiology, 591, 5809-5821. https://doi.org/10.1113/jphysiol.2013.259150
Fisher, J. A. (2016). The CO2 stimulus for cerebrovascular reactivity: Fixing inspired concentrations vs. targeting end-tidal partial pressures. Journal of Cerebral Blood Flow and Metabolism, 36, 1004-1011. https://doi.org/10.1177/0271678X16639326
Fisher, J. A., Venkatraghavan, L., & Mikulis, D. J. (2018). Magnetic resonance imaging-based cerebrovascular reactivity and hemodynamic reserve: A review of method optimization and data interpretation. Stroke, 49, 2011-2018. https://doi.org/10.1161/STROKEAHA.118.021012
Forster, H. V., Martino, P., Hodges, M., Krause, K., Bonis, J., Davis, S., & Pan, L. (2008). The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing. Integration in Respiratory Control, 605, 322-326. https://doi.org/10.1007/978-0-387-73693-8_56
Forster, H. V., & Smith, C. A. (2010). Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. Journal of Applied Physiology, 108, 989-994. https://doi.org/10.1152/japplphysiol.01059.2009
Giller, C. A., Bowman, G., Dyer, H., & Mootz, L. (1993). Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery, 32, 732-737. https://doi.org/10.1227/00006123-199305000-00006
Gonzales, A. L., Klug, N. R., Moshkforoush, A., Lee, J. C., Lee, F. K., Shui, B., Tsoukias, N. M., Kotlikoff, M. I., Hill-Eubanks, D., & Nelson, M. T. (2020). Contractile pericytes determine the direction of blood flow at capillary junctions. Proceedings of the National Academy of Sciences, USA, 117, 27022-27033. https://doi.org/10.1073/pnas.1922755117
Grant, R., Condon, B., Patterson, J., Wyper, D. J., Hadley, M. D. M., & Teasdale, G. M. (1989). Changes in cranial CSF volume during hypercapnia and hypocapnia. Journal of Neurology, Neurosurgery, and Psychiatry, 52, 218-222. https://doi.org/10.1136/jnnp.52.2.218
Guyenet, P. G. (2014). Regulation of breathing and autonomic outflows by chemoreceptors. Comprehensive Physiology, 4, 1511-1562. https://doi.org/10.1002/cphy.c140004
Guyenet, P. G., & Bayliss, D. A. (2015). Neural control of breathing and CO2 homeostasis. Neuron, 87, 946-961. https://doi.org/10.1016/j.neuron.2015.08.001
Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., O'Farrell, F. M., Buchan, A. M., Lauritzen, M., & Attwell, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508, 55-60. https://doi.org/10.1038/nature13165
Harper, A. M., & Glass, H. I. (1965). Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. Journal of Neurology, Neurosurgery, and Psychiatry, 28, 449-452. https://doi.org/10.1136/jnnp.28.5.449
Hartmann, D. A., Berthiaume, A., Grant, R. I., Harrill, S. A., Koski, T., Tieu, T., Mcdowell, K. P., Faino, A. V., Kelly, A. L., & Shih, A. Y. (2021). Brain capillary pericytes exert a substantial but slow influence on blood flow. Nature Neuroscience, 24, 633-645. https://doi.org/10.1038/s41593-020-00793-2
Hirshman, C. A., McCullough, R. E., & Weil, J. V. (1975). Normal values for hypoxic and hypercapnic ventilaroty drives in man. Journal of Applied Physiology, 38, 1095-1098. https://doi.org/10.1152/jappl.1975.38.6.1095
Hoiland, R. L., & Ainslie, P. N. (2016). CrossTalk proposal: The middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. Journal of Physiology, 594, 4073-4075. https://doi.org/10.1113/JP271981
Hoiland, R. L., Ainslie, P. N., Wildfong, K. W., Smith, K. J., Bain, A. R., Willie, C. K., Foster, G., Monteleone, B., & Day, T. A. (2015). Indomethacin-induced impairment of regional cerebrovascular reactivity: Implications for respiratory control. Journal of Physiology, 593, 1291-1306. https://doi.org/10.1113/jphysiol.2014.284521
Hoiland, R. L., Fisher, J. A., & Ainslie, P. N. (2019). Regulation of the cerebral circulation by arterial carbon dioxide. Comprehensive Physiology, 9, 1101-1154. https://doi.org/10.1002/cphy.c180021
Hoiland, R. L., Smith, K. J., Carter, H. H., Lewis, N. C. S., Tymko, M. M., Wildfong, K. W., Bain, A. R., Green, D. J., & Ainslie, P. N. (2017). Shear-mediated dilation of the internal carotid artery occurs independent of hypercapnia. American Journal of Physiology. Heart and Circulatory Physiology, 313, H24-H31. https://doi.org/10.1152/ajpheart.00119.2017
Horvath, I., Sandor, N. T., Ruttner, Z., & McLaughlin, A. C. (1994). Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. Journal of Cerebral Blood Flow and Metabolism, 14, 503-509. https://doi.org/10.1038/jcbfm.1994.62
Howe, C. A., Caldwell, H. G., Carr, J., Nowak-Flück, D., Ainslie, P. N., & Hoiland, R. L. (2020). Cerebrovascular reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to carbon dioxide. Experimental Physiology, 105, 904-915. https://doi.org/10.1113/EP088192
Johanson, C. E. (2008). Choroid plexus-cerebrospinal fluid circulatory dynamics: Impact on brain growth, metabolism, and repair. In Conn, P. M. (Ed.) Neuroscience in medicine (pp. 173-200). Totowa: Humana Press. https://doi.org/10.1007/978-1-60327-455-5_11
Kety, S., & Schmidt, C. (1948a). The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. Journal of Clinical Investigation, 27, 476-483. https://doi.org/10.1172/JCI101994
Kety, S. S., & Schmidt, C. F. (1948b). The Effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. Journal of Clinical Investigation, 27, 484-492. https://doi.org/10.1172/JCI101995
Kliefoth, A. B., Grurb, R. L., & Raichle, M. E. (1979). Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey. Journal of Neurochemistry, 32, 661-663. https://doi.org/10.1111/j.1471-4159.1979.tb00404.x
Kogure, K., Busto, R., Scheinberg, P., & Reinmuth, O. (1975). Dynamics of cerebral metabolism during moderate hypercapnia. Journal of Neurochemistry, 24, 471-478. https://doi.org/10.1111/j.1471-4159.1975.tb07664.x
Lennox, W. G., & Gibbs, E. L. (1932). The blood flow in the brain and the leg of man, and the changes induced by alteration of blood gases. Journal of Clinical Investigation, 11, 1155-1177. https://doi.org/10.1172/JCI100470
Lindsey, M. L., LeBlanc, A. J., Ripplinger, C. M., Kirk, J. A., Carter, J. R., Hansell Keehan, K., Brunt, K. R., Kleinbongard, P., & Kassiri, Z. (2021). Reinforcing rigor and reproducibility expectations for use of sex and gender in cardiovascular research. American Journal of Physiology. Heart and Circulatory Physiology, 321, H819-H824. https://doi.org/10.1152/ajpheart.00418.2021
Mark, C. I., Slessarev, M., Ito, S., Han, J., Fisher, J. A., & Pike, G. B. (2010). Precise control of end-tidal carbon dioxide and oxygen improves BOLD and ASL cerebrovascular reactivity measures. Magnetic Resonance in Medicine, 64, 749-756. https://doi.org/10.1002/mrm.22405
Mithoefer, J. C., & Kazemi, H. (1963). Gas exchange during rebreathing. Annals of the New York Academy of Sciences, 109, 743-755. https://doi.org/10.1111/j.1749-6632.1963.tb13503.x
Ogoh, S., Suzuki, K., Washio, T., Tamiya, K., Saito, S., Bailey, T. G., Shibata, S., Ito, G., & Miyamoto, T. (2019). Does respiratory drive modify the cerebral vascular response to changes in end-tidal carbon dioxide? Experimental Physiology, 104, 1363-1370. https://doi.org/10.1113/EP087744
Peebles, K., Celi, L., McGrattan, K., Murrell, C., Thomas, K., & Ainslie, P. N. (2007). Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2. Journal of Physiology, 584, 347-357. https://doi.org/10.1113/jphysiol.2007.137075
Regan, R. E., Fisher, J. A., & Duffin, J. (2014). Factors affecting the determination of cerebrovascular reactivity. Brain and Behaviour, 4, 775-788. https://doi.org/10.1002/brb3.275
Samora, M., & Vianna, L. C. (2020). Holding up under pressure: A complex interplay between cerebral blood flow and ventilatory responses to alterations in carbon dioxide. Experimental Physiology, 105, 771-772. https://doi.org/10.1113/EP088570
Shapiro, H. M., Stromberg, D. D., Lee, D. R., & Wiederhielm, C. A. (1971). Dynamic pressures in the pial arterial microcirculation. American Journal of Physiology, 221, 279-283. https://doi.org/10.1152/ajplegacy.1971.221.1.279
Slessarev, M., Han, J., Mardimae, A., Prisman, E., Preiss, D., Volgyesi, G., Ansel, C., Duffin, J., & Fisher, J. A. (2007). Prospective targeting and control of end-tidal CO2 and O2 concentrations. Journal of Physiology, 581, 1207-1219. https://doi.org/10.1113/jphysiol.2007.129395
Smith, C. A., Forster, H. V., Blain, G. M., & Dempsey, J. A. (2010). An interdependent model of central/peripheral chemoreception: Evidence and implications for ventilatory control. Respiratory Physiology & Neurobiology, 173, 288-297.
Smith, K. J., Wildfong, K. W., Hoiland, R. L., Harper, M., Lewis, N. C., Pool, A., Smith, S. L., Kuca, T., Foster, G. E., & Ainslie, P. N. (2016). Role of CO2 in the cerebral hyperemic response to incremental normoxic and hyperoxic exercise. Journal of Applied Physiology, 120, 843-854. https://doi.org/10.1152/japplphysiol.00490.2015
Thomas, K. N., Lewis, N. C. S., Hill, B. G., & Ainslie, P. N. (2015). Technical recommendations for the use of carotid duplex ultrasound for the assessment of extracranial blood flow. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 309, R707-R720. https://doi.org/10.1152/ajpregu.00211.2015
Tymko, M. M., Ainslie, P. N., Macleod, D. B., Willie, C. K., & Foster, G. E. (2015). End-tidal-to-arterial CO2 and O2 gas gradients at low- and high-altitude during dynamic end-tidal forcing. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 308, R895-R906. https://doi.org/10.1152/ajpregu.00425.2014
Tymko, M. M., Hoiland, R. L., Kuca, T., Boulet, L. M., Tremblay, J. C., Pinske, B. K., Williams, A. M., & Foster, G. E. (2016). Measuring the human ventilatory and cerebral blood flow response to CO2: A technical consideration for the end-tidal-to-arterial gas gradient. Journal of Applied Physiology, 120, 282-296. https://doi.org/10.1152/japplphysiol.00787.2015
Tymko, M. M., & Steinback, C. D. (2020). Standardizing the cerebrovascular response to hypercapnia - increasing the flow of data! Experimental Physiology, 105, 769-770. https://doi.org/10.1113/EP088565
Verbree, J., Bronzwaer, A., Ghariq, E., Versluis, M. J., Daemen, M., Van Buchem, M. A., Dahan, A., Van Lieshout, J. J., & Van Osch, M. J. P. (2014). Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. Journal of Applied Physiology, 117, 1084-1089. https://doi.org/10.1152/japplphysiol.00651.2014
Willie, C. K., Colino, F. L., Bailey, D. M., Tzeng, Y. C., Binsted, G., Jones, L. W., Haykowsky, M. J., Bellapart, J., Ogoh, S., Smith, K. J., Smirl, J. D., Day, T. A., Lucas, S. J., Eller, L. K., & Ainslie, P. N. (2011). Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. Journal of Neuroscience Methods, 196, 221-237.
Willie, C. K., Macleod, D. B., Shaw, A. D., Smith, K. J., Tzeng, Y. C., Eves, N. D., Ikeda, K., Graham, J., Lewis, N. C., Day, T. A., & Ainslie, P. N. (2012). Regional brain blood flow in man during acute changes in arterial blood gases. Journal of Physiology, 590, 3261-3275. https://doi.org/10.1113/jphysiol.2012.228551
Willie, C. K., Tzeng, Y. C., Fisher, J. A., & Ainslie, P. N. (2014). Integrative regulation of human brain blood flow. Journal of Physiology, 592, 841-859. https://doi.org/10.1113/jphysiol.2013.268953
Wolff, H. G., & Lennox, W. G. (1930). Cerebral Circulation XII. The effect on pial vessels of variations in the oxygen and carbon dioxide content of the blood. Archives of Neurology and Psychiatry, 23, 1097-1120. https://doi.org/10.1001/archneurpsyc.1930.02220120002001
Woodman, R. J., Playford, D. A., Watts, G. F., Cheetham, C., Reed, C., Taylor, R. R., Puddey, I. B., Beilin, L. J., Burke, V., Mori, T. A., & Green, D. (2001). Improved analysis of brachial artery ultrasound using a novel edge-detection software system. Journal of Applied Physiology, 91, 929-937. https://doi.org/10.1152/jappl.2001.91.2.929
Xu, F., Uh, J., Brier, M. R., Hart, J., Yezhuvath, U. S., Gu, H., Yang, Y., & Lu, H. (2011). The influence of carbon dioxide on brain activity and metabolism in conscious humans. Journal of Cerebral Blood Flow and Metabolism, 31, 58-67. https://doi.org/10.1038/jcbfm.2010.153
Yang, S. P., & Krasney, J. A. (1995). Cerebral blood flow and metabolic responses to sustained hypercapnia in awake sheep. Journal of Cerebral Blood Flow and Metabolism, 15, 115-123. https://doi.org/10.1038/jcbfm.1995.13