Human mucosal tissue-resident memory T cells in health and disease.


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
03 2022
Historique:
received: 19 08 2021
accepted: 18 10 2021
revised: 11 10 2021
pubmed: 8 11 2021
medline: 28 4 2022
entrez: 7 11 2021
Statut: ppublish

Résumé

Memory T cells are fundamental to maintain immune surveillance of the human body. During the past decade, it has become apparent that non-recirculating resident memory T cells (TRMs) form a first line memory response in tissues to tackle re-infections. The fact that TRMs are essential for local immunity highlights the therapeutic potential of targeting this population against tumors and infections. However, similar to other immune subsets, TRMs are heterogenous and may form distinct effector populations with unique functions at diverse tissue sites. Further insight into the mechanisms of how TRM function and respond to pathogens and malignancies at different mucosal sites will help to shape future vaccine and immunotherapeutic approaches. Here, we review the current understanding of TRM function and biology at four major mucosal sites: gastrointestinal tract, lung, head and neck, as well as female reproductive tract. We also summarize our current knowledge of how TRM targets invading pathogens and developing tumor cells at these mucosal sites and contemplate how TRMs may be exploited to protect from infections and cancer.

Identifiants

pubmed: 34743182
doi: 10.1038/s41385-021-00467-7
pii: S1933-0219(22)00061-7
pmc: PMC8571012
doi:

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

389-397

Informations de copyright

© 2021. The Author(s).

Références

GOWANS, J. L. The effect of the continuous re-infusion of lymph and lymphocytes on the output of lymphocytes from the thoracic duct of unanaesthetized rats. Br. J. Exp. Pathol. 38, 67–78 (1957).
pubmed: 13413083 pmcid: 2082164
Gowans, J. L. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. 146, 54–69 (1959).
pubmed: 13655215 pmcid: 1356889 doi: 10.1113/jphysiol.1959.sp006177
GOWANS, J. L. & KNIGHT, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. London. Ser. B, Contain. Pap. 159, 257–282 (1964).
Mackay, C. R., Kimpton, W. G., Brandon, M. R. & Cahill, R. N. P. Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J. Exp. Med. 167, 1755–1765 (1988).
pubmed: 3290379 doi: 10.1084/jem.167.6.1755
Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory t cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).
pubmed: 2307933 doi: 10.1084/jem.171.3.801
Maddox, J. F., Mackay, C. R. & Brandon, M. R. Surface antigens, SBU-14 and SBU-T8, of sheep T lymphocyte subsets defined by monoclonal antibodies. Immunology 55, 739–748 (1985).
pubmed: 3894225 pmcid: 1453767
Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
pubmed: 10537110 doi: 10.1038/44385
Gerlach, C. et al. The Chemokine Receptor CX3CR1 Defines Three Antigen-Experienced CD8 T Cell Subsets with Distinct Roles in Immune Surveillance and Homeostasis. Immunity 45, 1270–1284 (2016).
pubmed: 27939671 pmcid: 5177508 doi: 10.1016/j.immuni.2016.10.018
Böttcher, J. P. et al. Functional classification of memory CD8 + T cells by CX 3 CR1 expression. Nat. Commun. 6, 8306 (2015).
pubmed: 26404698 doi: 10.1038/ncomms9306
Buggert, M. et al. The Identity of Human Tissue-Emigrant CD8+ T. Cells Cell 183, 1946–1961 (2020).
pubmed: 33306960 doi: 10.1016/j.cell.2020.11.019
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).
pubmed: 19305395 doi: 10.1038/ni.1718
Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).
pubmed: 20156972 pmcid: 2839151 doi: 10.1084/jem.20090858
Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. J. Immunol. 192, 845–849 (2014).
pubmed: 24443507
Wakim, L. M., Waithman, J., Van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science (80-) 319, 198–202 (2008).
doi: 10.1126/science.1151869
Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).
pubmed: 30952804 pmcid: 6778482 doi: 10.1126/sciimmunol.aas9673
Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).
pubmed: 25957682 pmcid: 4426972 doi: 10.1016/j.cell.2015.03.031
Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018).
pubmed: 29664571 doi: 10.1111/imr.12650
Jiang, X. et al. Skin infection generates non-migratory memory CD8 + T RM cells providing global skin immunity. Nature 483, 227–231 (2012).
pubmed: 22388819 pmcid: 3437663 doi: 10.1038/nature10851
Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).
pubmed: 28738020 pmcid: 5525335 doi: 10.1126/sciimmunol.aam6346
Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl. Med. 4, 117 (2012).
doi: 10.1126/scitranslmed.3003008
Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 7, 279 (2015).
doi: 10.1126/scitranslmed.3010302
Lian, C. G. et al. Biomarker evaluation of face transplant rejection: Association of donor T cells with target cell injury. Mod. Pathol. 27, 788–799 (2014).
pubmed: 24434898 doi: 10.1038/modpathol.2013.249
Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).
pubmed: 30850393 pmcid: 6435356 doi: 10.1126/sciimmunol.aav5581
Bartolomé-Casado, R. et al. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 216, 2412–2426 (2019).
pubmed: 31337737 pmcid: 6781004 doi: 10.1084/jem.20190414
Sathaliyawala, T. et al. Distribution and Compartmentalization of Human Circulating and Tissue-Resident Memory T Cell Subsets. Immunity 38, 187–197 (2013).
pubmed: 23260195 doi: 10.1016/j.immuni.2012.09.020
Thome, J. J. C. et al. Spatial map of human t cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).
pubmed: 25417158 pmcid: 4243051 doi: 10.1016/j.cell.2014.10.026
Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P 1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).
pubmed: 16525420 doi: 10.1038/nature04606
Buggert, M. et al. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. Sci. Immunol. 3, eaar4526 (2018).
pubmed: 29858286 pmcid: 6357781 doi: 10.1126/sciimmunol.aar4526
Vella, L. A. et al. T follicular helper cells in human efferent lymph retain lymphoid characteristics. J. Clin. Investig. 129, 3185–3200 (2019).
pubmed: 31264971 pmcid: 6668682 doi: 10.1172/JCI125628
Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).
pubmed: 28526759 pmcid: 5461007 doi: 10.1084/jem.20162115
Kumar, B. V. et al. Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. Cell Rep. 20, 2921–2934 (2017).
pubmed: 28930685 pmcid: 5646692 doi: 10.1016/j.celrep.2017.08.078
Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8 + T cells. Nat. Immunol. 14, 509–513 (2013).
pubmed: 23542740 pmcid: 3631432 doi: 10.1038/ni.2568
Miron, M. et al. Maintenance of the human memory T cell repertoire by subset and tissue site. Genome Med. 13, 100 (2021).
pubmed: 34127056 pmcid: 8204429 doi: 10.1186/s13073-021-00918-7
Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8 + lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).
pubmed: 27776108 doi: 10.1038/ni.3589
Oja, A. E. et al. Trigger-happy resident memory CD4 + T cells inhabit the human lungs. Mucosal. Immunol. 11, 654–667 (2018).
pubmed: 29139478 doi: 10.1038/mi.2017.94
Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584–594 (2008).
pubmed: 18452692 doi: 10.1016/S0025-6196(11)60735-0
Djenidi, F. et al. CD8 + CD103 + Tumor–Infiltrating Lymphocytes Are Tumor-Specific Tissue-Resident Memory T Cells and a Prognostic Factor for Survival in Lung Cancer Patients. J. Immunol. 194, 3475–3486 (2015).
pubmed: 25725111 doi: 10.4049/jimmunol.1402711
Koh, J. et al. Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 8, 13762–13769 (2017).
pubmed: 28099920 pmcid: 5355136 doi: 10.18632/oncotarget.14632
Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).
pubmed: 28628092 pmcid: 6036910 doi: 10.1038/ni.3775
Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017).
pubmed: 28537262 pmcid: 5458068 doi: 10.1038/ncomms15221
Oja, A. E. et al. Functional heterogeneity of CD4+ tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front. Immunol. 9, 2654 (2018).
pubmed: 30505306 pmcid: 6250821 doi: 10.3389/fimmu.2018.02654
Cibrián, D. & Sánchez-Madrid, F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 47, 946–953 (2017).
pubmed: 28475283 pmcid: 6485631 doi: 10.1002/eji.201646837
Labiano, S. et al. CD69 is a direct HIF-1α target gene in hypoxia as a mechanism enhancing expression on tumor-infiltrating T lymphocytes. Oncoimmunology 6, e1283468 (2017).
pubmed: 28507790 pmcid: 5414881 doi: 10.1080/2162402X.2017.1283468
Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).
pubmed: 30006565 pmcid: 6045647 doi: 10.1038/s41467-018-05072-0
Le Floc’h, A. et al. αEβ7 Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis, integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J. Exp. Med. 204, 559–570 (2007).
pubmed: 17325197 pmcid: 2137907 doi: 10.1084/jem.20061524
Wang, P. et al. CD103+CD8+ T lymphocytes in non-small cell lung cancer are phenotypically and functionally primed to respond to PD-1 blockade. Cell. Immunol. 325, 48–55 (2018).
pubmed: 29448979 doi: 10.1016/j.cellimm.2018.02.002
Banchereau, R. et al. Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. J. Immunother. Cancer 9, e002231 (2021).
pubmed: 33827905 pmcid: 8032254 doi: 10.1136/jitc-2020-002231
Troeger, C. E. et al. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 7, 69–89 (2019). 7, (2019).
doi: 10.1016/S2213-2600(18)30496-X
Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal. Immunol. 7, 501–510 (2014).
pubmed: 24064670 doi: 10.1038/mi.2013.67
Piet, B. et al. CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Investig. 121, 2254–2263 (2011).
pubmed: 21537083 pmcid: 3104744 doi: 10.1172/JCI44675
Koutsakos, M. et al. Human CD8 + T cell cross-reactivity across influenza A, B and C viruses. Nat. Immunol. 20, 613–625 (2019).
pubmed: 30778243 doi: 10.1038/s41590-019-0320-6
De Bree, G. J. et al. Selective accumulation of differentiated CD8+ Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung, T cells specific for respiratory viruses in the human lung. J. Exp. Med. 202, 1433–1442 (2005).
pubmed: 16301748 pmcid: 2212987 doi: 10.1084/jem.20051365
Teijaro, J. R. et al. Cutting Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal Protection to Respiratory Virus Infection. J. Immunol. 187, 5510–5514 (2011).
pubmed: 22058417 doi: 10.4049/jimmunol.1102243
Pizzolla, A. et al. Influenza-specific lung-resident memory t cells are proliferative and polyfunctional and maintain diverse TCR profiles. J. Clin. Investig. 128, 721–733 (2018).
pubmed: 29309047 pmcid: 5785253 doi: 10.1172/JCI96957
Wu, T. et al. Lung-resident memory CD8 T cells (T RM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).
pubmed: 24006506 pmcid: 3896663 doi: 10.1189/jlb.0313180
Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).
pubmed: 24056771 doi: 10.1038/nm.3350
Slütter, B. et al. Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci. Immunol. 2, eaag2031 (2017).
pubmed: 28783666 pmcid: 5590757 doi: 10.1126/sciimmunol.aag2031
Nguyen, T. H. O. et al. Influenza, but not SARS-CoV-2, infection induces a rapid interferon response that wanes with age and diminished tissue-resident memory CD8+ T cells. Clin. Transl. Immunol. 10, e1242 (2021).
doi: 10.1002/cti2.1242
Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K. & Perlman, S. Virus-Specific Memory CD8 T Cells Provide Substantial Protection from Lethal Severe Acute Respiratory Syndrome Coronavirus Infection. J. Virol. 88, 11034–11044 (2014).
pubmed: 25056892 pmcid: 4178831 doi: 10.1128/JVI.01505-14
Karlsson, A. C., Humbert, M. & Buggert, M. The known unknowns of T cell immunity to COVID-19. Sci. Immunol. 5, eabe8063 (2020).
pubmed: 33208380 doi: 10.1126/sciimmunol.abe8063
Channappanavar, R., Zhao, J. & Perlman, S. T cell-mediated immune response to respiratory coronaviruses. Immunologic Res. 59, 118–128 (2014).
doi: 10.1007/s12026-014-8534-z
Grau-Expósito, J. et al. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun. 12, 3010 (2021).
pubmed: 34021148 pmcid: 8140108 doi: 10.1038/s41467-021-23333-3
Julia, N. et al. Identification of resident memory CD8+ T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci. Immunol. 10.1126-sciimmunol.abk0894 (2021).
Hassan, A. O. et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 36, 109452 (2021).
pubmed: 34289385 pmcid: 8270739 doi: 10.1016/j.celrep.2021.109452
Calmette, A. Preventive Vaccination against Tuberculosis with BCG. J. R. Soc. Med. 24, 1481–1490 (1931).
doi: 10.1177/003591573102401109
Trunz, B. B., Fine, P. & Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367, 1173–1180 (2006).
pubmed: 16616560 doi: 10.1016/S0140-6736(06)68507-3
Connor, L. M. et al. A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur. J. Immunol. 40, 2482–2492 (2010).
pubmed: 20602436 doi: 10.1002/eji.200940279
Bull, N. C. et al. Induction and maintenance of a phenotypically heterogeneous lung tissue-resident CD4+ T cell population following BCG immunisation. Vaccine 36, 5625–5635 (2018).
pubmed: 30097220 pmcid: 6143486 doi: 10.1016/j.vaccine.2018.07.035
Aguilo, N. et al. Pulmonary Mycobacterium bovis BCG vaccination confers dose-dependent superior protection compared to that of subcutaneous vaccination. Clin. Vaccin. Immunol. 21, 594–597 (2014).
doi: 10.1128/CVI.00700-13
Copland, A. et al. Mucosal delivery of fusion proteins with Bacillus subtilis spores enhances protection against tuberculosis by Bacillus Calmette-Guérin. Front. Immunol. 9, 346 (2018).
pubmed: 29593708 pmcid: 5857916 doi: 10.3389/fimmu.2018.00346
Hart, P. et al. Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection. Mol. Ther. 26, 822–833 (2018).
pubmed: 29518353 doi: 10.1016/j.ymthe.2017.12.016
Hu, Z. et al. Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice. Mol. Ther. 25, 1222–1233 (2017).
pubmed: 28342639 pmcid: 5417795 doi: 10.1016/j.ymthe.2017.02.018
Perdomo, C. et al. Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. MBio 7, e01686–16 (2016).
pubmed: 27879332 pmcid: 5120139 doi: 10.1128/mBio.01686-16
Sharpe, S. et al. Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: Protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations. Tuberculosis 101, 174–190 (2016).
pubmed: 27865390 doi: 10.1016/j.tube.2016.09.004
Kaveh, D. A., Bachy, V. S., Hewinson, R. G. & Hogarth, P. J. Systemic BCG immunization induces persistent lung mucosal multifunctional CD4 TEM cells which expand following virulent mycobacterial challenge. PLoS ONE 6, e21566 (2011).
pubmed: 21720558 pmcid: 3123368 doi: 10.1371/journal.pone.0021566
White, A. D. et al. Evaluation of the immunogenicity of Mycobacterium bovis BCG delivered by aerosol to the lungs of macaques. Clin. Vaccin. Immunol. 22, 992–1003 (2015).
doi: 10.1128/CVI.00289-15
Darrah, P. A. et al. Aerosol Vaccination with AERAS-402 Elicits Robust Cellular Immune Responses in the Lungs of Rhesus Macaques but Fails To Protect against High-Dose Mycobacterium tuberculosis Challenge. J. Immunol. 193, 1799–1811 (2014).
pubmed: 25024382 doi: 10.4049/jimmunol.1400676
Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).
pubmed: 31894150 pmcid: 7015856 doi: 10.1038/s41586-019-1817-8
French, J. J. et al. T cell adhesion and cytolysis of pancreatic cancer cells: A role for E-cadherin in immunotherapy? Br. J. Cancer 87, 1034–1041 (2002).
pubmed: 12434297 pmcid: 2364324 doi: 10.1038/sj.bjc.6600597
Han, L. et al. Characterization of CD103+ CD8+ tissue-resident T cells in esophageal squamous cell carcinoma: may be tumor reactive and resurrected by anti-PD-1 blockade. Cancer Immunol. Immunother. 69, 1493–1504 (2020).
pubmed: 32285170 doi: 10.1007/s00262-020-02562-3
Booth, J. S. et al. Characterization and functional properties of gastric tissue-resident memory T cells from children, adults, and the elderly. Front. Immunol. 5, 294 (2014).
pubmed: 24995010 pmcid: 4062881 doi: 10.3389/fimmu.2014.00294
Thome, J. J. C. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).
pubmed: 26657141 doi: 10.1038/nm.4008
Senda, T. et al. Microanatomical dissection of human intestinal T-cell immunity reveals site-specific changes in gut-associated lymphoid tissues over life. Mucosal Immunol. 12, 378–389 (2019).
pubmed: 30523311 doi: 10.1038/s41385-018-0110-8
Bartolomé-Casado, R. et al. CD4+ T cells persist for years in the human small intestine and display a TH1 cytokine profile. Mucosal Immunol. 14, 402–410 (2021).
pubmed: 32572129 doi: 10.1038/s41385-020-0315-5
Zuber, J. et al. Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Sci. Immunol. 1, eaah3732 (2016).
pubmed: 28239678 pmcid: 5323244 doi: 10.1126/sciimmunol.aah3732
Tkachev, V. et al. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease. Sci. Transl. Med. 13, eabc0227 (2021).
pubmed: 33441422 doi: 10.1126/scitranslmed.abc0227
Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).
pubmed: 24162775 pmcid: 3844557 doi: 10.1038/ni.2745
Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory cd8+ t cells with enhanced protective function. Immunity 40, 747–757 (2014).
pubmed: 24792910 pmcid: 4045016 doi: 10.1016/j.immuni.2014.03.007
Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).
pubmed: 24076049 pmcid: 3805703 doi: 10.1016/j.immuni.2013.08.019
Konkel, J. E. et al. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat. Immunol. 12, 312–319 (2011).
pubmed: 21297643 pmcid: 3062738 doi: 10.1038/ni.1997
Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. & Lordick, F. Gastric cancer. Lancet 396, 635–648 (2020).
pubmed: 32861308 doi: 10.1016/S0140-6736(20)31288-5
Lin, R. et al. Fatty acid oxidation controls CD8+Tissue-resident memory t-cell survival in gastric adenocarcinoma. Cancer Immunol. Res. 8, 479–492 (2020).
pubmed: 32075801 doi: 10.1158/2326-6066.CIR-19-0628
Li, R. et al. Identification and validation of an immunogenic subtype of gastric cancer with abundant intratumoural CD103+CD8+ T cells conferring favourable prognosis. Br. J. Cancer 122, 1525–1534 (2020).
pubmed: 32205862 pmcid: 7217759 doi: 10.1038/s41416-020-0813-y
Mori, T. et al. Tertiary lymphoid structures show infiltration of effective tumor-resident T cells in gastric cancer. Cancer Sci. 112, 1746–1757 (2021).
pubmed: 33735485 pmcid: 8088970 doi: 10.1111/cas.14888
Rawla, P., Sunkara, T. & Barsouk, A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz. Gastroenterologiczny 14, 89–103 (2019).
Koopman, M. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 100, 266–273 (2009).
pubmed: 19165197 pmcid: 2634718 doi: 10.1038/sj.bjc.6604867
Goldstein, J. et al. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H). Ann. Oncol. 25, 1032–1038 (2014).
pubmed: 24585723 pmcid: 4072907 doi: 10.1093/annonc/mdu100
Timmermann, B. et al. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS ONE 5, e15661 (2010).
pubmed: 21203531 pmcid: 3008745 doi: 10.1371/journal.pone.0015661
Muzny, D. M. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
doi: 10.1038/nature11252
Gatalica, Z. et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol. Biomark. Prev. 23, 2965–2970 (2014).
doi: 10.1158/1055-9965.EPI-14-0654
Le, D. T. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).
pubmed: 26028255 pmcid: 4481136 doi: 10.1056/NEJMoa1500596
De Vries, N. L. et al. High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity. High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity. Gut 69, 691–703 (2020).
pubmed: 31270164 doi: 10.1136/gutjnl-2019-318672
Estes, J. D. et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med. 23, 1271–1276 (2017).
pubmed: 28967921 pmcid: 5831193 doi: 10.1038/nm.4411
Veazey, R. S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science (80-). 280, 427–431 (1998).
doi: 10.1126/science.280.5362.427
Cantero-Pérez, J. et al. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat. Commun. 10, 4739 (2019).
pubmed: 31628331 pmcid: 6802119 doi: 10.1038/s41467-019-12732-2
Altfeld, M. et al. Expansion of pre-existing, lymph node-localized CD8+ T cells during supervised treatment interruptions in chronic HIV-1 infection. J. Clin. Investig. 109, 837–843 (2002).
pubmed: 11901192 pmcid: 150914 doi: 10.1172/JCI0214789
Shacklett, B. L. et al. Trafficking of Human Immunodeficiency Virus Type 1-Specific CD8 + T Cells to Gut-Associated Lymphoid Tissue during Chronic Infection. J. Virol. 77, 5621–5631 (2003).
pubmed: 12719554 pmcid: 154016 doi: 10.1128/JVI.77.10.5621-5631.2003
Buggert, M. et al. T-bet and Eomes Are Differentially Linked to the Exhausted Phenotype of CD8+ T Cells in HIV Infection. PLoS Pathog. 10, e1004251 (2014).
pubmed: 25032686 pmcid: 4102564 doi: 10.1371/journal.ppat.1004251
Kiniry, B. E. et al. Detection of HIV-1-specific gastrointestinal tissue resident CD8 + T-cells in chronic infection. Mucosal Immunol. 11, 909–920 (2018).
pubmed: 29139476 doi: 10.1038/mi.2017.96
Arunachalam, P. S. et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat. Med. 26, 932–940 (2020).
pubmed: 32393800 pmcid: 7303014 doi: 10.1038/s41591-020-0858-8
Wira, C. R., Fahey, J. V., Rodriguez-Garcia, M., Shen, Z. & Patel, M. V. Regulation of mucosal immunity in the female reproductive tract: The role of sex hormones in immune protection against sexually transmitted pathogens. Am. J. Reprod. Immunol. 72, 236–258 (2014).
pubmed: 24734774 pmcid: 4351777 doi: 10.1111/aji.12252
Wira, C. R. et al. Epithelial cell secretions from the human female reproductive tract inhibit sexually transmitted pathogens and Candida albicans but not Lactobacillus. Mucosal Immunol. 4, 335–342 (2011).
pubmed: 21048705 doi: 10.1038/mi.2010.72
Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021).
pubmed: 33731934 doi: 10.1038/s41586-021-03351-3
Schenkel, J. M. et al. Resident memory CD8 t cells trigger protective innate and adaptive immune responses. Sci. (80-.) 346, 98–101 (2014).
doi: 10.1126/science.1254536
Çuburu, N. et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J. Clin. Investig. 122, 4606–4620 (2012).
pubmed: 23143305 pmcid: 3533540 doi: 10.1172/JCI63287
Beura, L. K. et al. Intravital mucosal imaging of CD8 + resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory article. Nat. Immunol. 19, 173–182 (2018).
pubmed: 29311694 pmcid: 5896323 doi: 10.1038/s41590-017-0029-3
Iijima, N. & Iwasaki, A. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science (80-) 346, 93–98 (2014).
doi: 10.1126/science.1257530
Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).
pubmed: 23075848 pmcid: 3499630 doi: 10.1038/nature11522
Shin, H., Kumamoto, Y., Gopinath, S. & Iwasaki, A. CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. Nat. Commun. 7, 13346 (2016).
pubmed: 27827367 pmcid: 5105190 doi: 10.1038/ncomms13346
Peng, T. et al. Distinct populations of antigen specific tissue resident CD8 T cells in human cervix mucosa. JCI Insight 6, https://doi.org/10.1172/jci.insight.149950 (2021).
Arbyn, M. et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob. Heal 8, e191–e203 (2020).
doi: 10.1016/S2214-109X(19)30482-6
Komdeur, F. L. et al. CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. Oncoimmunology 6, e1338230 (2017).
pubmed: 28932636 pmcid: 5599086 doi: 10.1080/2162402X.2017.1338230
O’neil, T. R. et al. The role of tissue resident memory cd4 t cells in herpes simplex viral and hiv infection. Viruses 13, 359 (2021).
pubmed: 33668777 pmcid: 7996247 doi: 10.3390/v13030359
Posavad, C. M. et al. Persistence of mucosal T-cell responses to herpes simplex virus type 2 in the female genital tract. Mucosal Immunol. 8, 115–126 (2015).
pubmed: 24917455 doi: 10.1038/mi.2014.47
Schiffer, J. T. et al. A Fixed Spatial Structure of CD8 + T Cells in Tissue during Chronic HSV-2 Infection. J. Immunol. 201, 1522–1535 (2018).
pubmed: 30045971 doi: 10.4049/jimmunol.1800471
Roychoudhury, P. et al. Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J. Clin. Investig. 130, 2903–2919 (2020).
pubmed: 32125285 pmcid: 7260013 doi: 10.1172/JCI132583
Koelle, D. M. et al. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Investig. 101, 1500–1508 (1998).
pubmed: 9525993 pmcid: 508728 doi: 10.1172/JCI1758
Wong, M. T. et al. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures. Immunity 45, 442–456 (2016).
pubmed: 27521270 doi: 10.1016/j.immuni.2016.07.007
Hislop, A. D. et al. Tonsillar homing of Epstein-Barr virus-specific CD8+ T cells and the virus-host balance. J. Clin. Investig. 115, 2546–2555 (2005).
pubmed: 16110323 pmcid: 1187932 doi: 10.1172/JCI24810
Woodberry, T. et al. α E β 7 (CD103) Expression Identifies a Highly Active, Tonsil-Resident Effector-Memory CTL Population. J. Immunol. 175, 4355–4362 (2005).
pubmed: 16177076 doi: 10.4049/jimmunol.175.7.4355
Argiris, A. & Eng, C. Epidemiology, staging, and screening of head and neck cancer. Cancer Treatment Res. 114, 15–60 (2003).
doi: 10.1007/0-306-48060-3_2
Szymańska, K. et al. Alcohol and tobacco, and the risk of cancers of the upper aerodigestive tract in Latin America: A case-control study. Cancer Causes Control 22, 1037–1046 (2011).
pubmed: 21607590 doi: 10.1007/s10552-011-9779-7
Anantharaman, D. et al. Population attributable risk of tobacco and alcohol for upper aerodigestive tract cancer. Oral. Oncol. 47, 725–731 (2011).
pubmed: 21684805 doi: 10.1016/j.oraloncology.2011.05.004
Harper, D. M. & DeMars, L. R. HPV vaccines – A review of the first decade. Gynecologic Oncol. 146, 196–204 (2017).
doi: 10.1016/j.ygyno.2017.04.004
Hewavisenti, R. et al. CD103+ tumor-resident CD8+ T cell numbers underlie improved patient survival in oropharyngeal squamous cell carcinoma. J. Immunother. Cancer 8, e000452 (2020).
pubmed: 32527931 pmcid: 7292045 doi: 10.1136/jitc-2019-000452
Mann, J. E. et al. Analysis of tumor-infiltrating CD103 resident memory T-cell content in recurrent laryngeal squamous cell carcinoma. Cancer Immunol. Immunother. 68, 213–220 (2019).
pubmed: 30361882 doi: 10.1007/s00262-018-2256-3
Mazzoni, A. et al. Human T cells interacting with HNSCC-derived mesenchymal stromal cells acquire tissue-resident memory like properties. Eur. J. Immunol. 50, 1571–1579 (2020).
pubmed: 32441311 doi: 10.1002/eji.202048544
Sinclair, J. Human cytomegalovirus: Latency and reactivation in the myeloid lineage. J. Clin. Virol. 41, 180–185 (2008).
pubmed: 18164651 doi: 10.1016/j.jcv.2007.11.014
Walter, E. A. et al. Reconstitution of Cellular Immunity against Cytomegalovirus in Recipients of Allogeneic Bone Marrow by Transfer of T-Cell Clones from the Donor. N. Engl. J. Med. 333, 1038–1044 (1995).
pubmed: 7675046 doi: 10.1056/NEJM199510193331603
Lilleri, D. et al. Human cytomegalovirus-specific CD4+ and CD8+ T cell responses in primary infection of the immunocompetent and the immunocompromised host. Clin. Immunol. 131, 395–403 (2009).
pubmed: 19268633 doi: 10.1016/j.clim.2009.02.002
Özdemir, E. et al. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood 100, 3690–3697 (2002).
pubmed: 12393402 doi: 10.1182/blood-2002-05-1387
Thom, J. T. & Oxenius, A. Tissue-resident memory T cells in cytomegalovirus infection. Curr. Opin. Virol. 16, 63–69 (2016).
pubmed: 26855038 doi: 10.1016/j.coviro.2016.01.014
Gordon, C. L. et al. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. J. Exp. Med. 214, 651–667 (2017).
pubmed: 28130404 pmcid: 5339671 doi: 10.1084/jem.20160758
Woon, H. G. et al. Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs. PLoS Pathog. 12, e1005799 (2016).
pubmed: 27540722 pmcid: 4991796 doi: 10.1371/journal.ppat.1005799
Taylor, G. S., Long, H. M., Brooks, J. M., Rickinson, A. B. & Hislop, A. D. The immunology of epstein-barr virus-induced disease. Annu. Rev. Immunol. 33, 787–821 (2015).
pubmed: 25706097 doi: 10.1146/annurev-immunol-032414-112326
Long, H. M., Meckiff, B. J. & Taylor, G. S. The T-cell Response to Epstein-Barr Virus–New Tricks From an Old Dog. Front. Immunol. 10, 2193 (2019).
pubmed: 31620125 pmcid: 6759930 doi: 10.3389/fimmu.2019.02193

Auteurs

Joshua Lange (J)

Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.

Olga Rivera-Ballesteros (O)

Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.

Marcus Buggert (M)

Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden. marcus.buggert@ki.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH