The potential use of
abiotic stress
biostimulants
ionomic analysis
maize
microalgae
root system
Journal
Algal research
ISSN: 2211-9264
Titre abrégé: Algal Res
Pays: Netherlands
ID NLM: 101609524
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
entrez:
8
11
2021
pubmed:
9
11
2021
medline:
9
11
2021
Statut:
epublish
Résumé
Nitrogen deficiency and drought stress are among the major stresses faced by plants with negative consequence on crop production. The use of plant biostimulants is a very promising application in agriculture to improve crop yield, but especially to prevent the effect of abiotic stresses. Algae-derived biostimulants represent an efficient tool to stimulate the root development: while macroalgae have already been widely adopted as a source of biostimulants to improve plants growth and resilience, far less information is available for microalgae. The objective of this work is to investigate the stimulant ability on maize roots of two green algae species,
Identifiants
pubmed: 34745855
doi: 10.1016/j.algal.2021.102515
pmc: PMC7611950
mid: EMS137439
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : European Research Council
ID : 679814
Pays : International
Déclaration de conflit d'intérêts
No conflicts, informed consent, or human or animal rights are applicable to this study Additional Information The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Bioresour Technol. 2021 Nov;339:125588
pubmed: 34298244
Front Plant Sci. 2017 Mar 30;8:433
pubmed: 28424716
Plant J. 2018 Feb;93(3):566-586
pubmed: 29178410
Sci Rep. 2017 Apr 07;7:46185
pubmed: 28387312
J Agric Food Chem. 2017 Nov 22;65(46):9956-9969
pubmed: 29064699
Metab Eng. 2018 Sep;49:116-127
pubmed: 30017797
Bioresour Technol. 2021 Mar;323:124542
pubmed: 33385626
J Exp Bot. 2000 Sep;51(350):1555-62
pubmed: 11006306
Bioresour Technol. 2013 Mar;131:60-7
pubmed: 23340103
Aquat Toxicol. 2017 Aug;189:1-8
pubmed: 28554051
J Appl Phycol. 2016;28:1051-1061
pubmed: 27057088
Biol Trace Elem Res. 2011 Dec;144(1-3):1240-50
pubmed: 21660532
Plant Biotechnol J. 2020 Feb 25;:
pubmed: 32096597
Trends Plant Sci. 2004 Dec;9(12):597-605
pubmed: 15564127
Front Plant Sci. 2018 Dec 07;9:1782
pubmed: 30581447
Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665-9
pubmed: 4379719
Biotechnol Biofuels. 2014 Oct 21;7(1):157
pubmed: 25352913
Enzyme Microb Technol. 2011 Dec 10;49(6-7):540-6
pubmed: 22142729
Sci Rep. 2020 Feb 18;10(1):2820
pubmed: 32071360
Biomed Res Int. 2018 May 21;2018:1503126
pubmed: 29951526
Curr Opin Plant Biol. 2017 Oct;39:80-87
pubmed: 28672167
J Exp Bot. 2011 Feb;62(4):1499-509
pubmed: 20926552
Metab Eng. 2016 Nov;38:331-343
pubmed: 27474353
Plant Physiol. 2002 Dec;130(4):1951-7
pubmed: 12481077
Sensors (Basel). 2020 Mar 08;20(5):
pubmed: 32182722
R Soc Open Sci. 2016 Oct 26;3(10):160592
pubmed: 27853580
Plant Cell Environ. 2021 Sep;44(9):2987-3001
pubmed: 33931891
Springerplus. 2016 Aug 22;5(1):1393
pubmed: 27610312
Biotechnol Adv. 2018 Jul - Aug;36(4):1255-1273
pubmed: 29673972
J Biol Chem. 2012 Feb 17;287(8):5833-47
pubmed: 22205699
J Integr Plant Biol. 2016 Mar;58(3):193-202
pubmed: 26460087
J Sci Food Agric. 2010 Jan 30;90(2):299-303
pubmed: 20355046
Science. 1989 Dec 15;246(4936):1503-4
pubmed: 17756009
ACS Synth Biol. 2018 Nov 16;7(11):2547-2557
pubmed: 30296377
Protoplasma. 2013 Feb;250(1):33-42
pubmed: 22234834
Sci Rep. 2021 Jan 13;11(1):930
pubmed: 33441599
Front Plant Sci. 2016 Oct 25;7:1591
pubmed: 27826310