Coagulation parameters in the newborn and infant - the Copenhagen Baby Heart and COMPARE studies.
coagulation
cord blood
hemostasis
neonatology
reference intervals
Journal
Clinical chemistry and laboratory medicine
ISSN: 1437-4331
Titre abrégé: Clin Chem Lab Med
Pays: Germany
ID NLM: 9806306
Informations de publication
Date de publication:
27 01 2022
27 01 2022
Historique:
received:
02
09
2021
accepted:
25
10
2021
pubmed:
10
11
2021
medline:
26
3
2022
entrez:
9
11
2021
Statut:
epublish
Résumé
The coagulation system is not fully developed at birth and matures during the first months of infancy, complicating clinical decision making within hemostasis. This study evaluates coagulation parameters at birth and two months after birth, and tests whether cord blood can be used as a proxy for neonatal venous blood measurements. The Copenhagen Baby Heart Study (CBHS) and the COMPARE study comprise 13,237 cord blood samples and 444 parallel neonatal venous blood samples, with a two month follow-up in 362 children. Because coagulation parameters differed according to gestational age (GA), all analyses were stratified by GA. For neonatal venous blood, reference intervals for activated partial thromboplastin time (APTT) and prothrombin time (PT) were 28-43 s and 33-61% for GA 37-39 and 24-38 s and 30-65% for GA 40-42. Reference intervals for international normalized ratio (INR) and thrombocyte count were 1.1-1.7 and 194-409 × 10 This study describes new GA dependent reference intervals for common coagulation parameters in newborns and suggests that cord blood may serve as a proxy for neonatal venous blood for these traits. Such data will likely improve clinical decision making within hemostasis among newborn and infant children.
Identifiants
pubmed: 34752018
pii: cclm-2021-0967
doi: 10.1515/cclm-2021-0967
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
261-270Informations de copyright
© 2021 Walter de Gruyter GmbH, Berlin/Boston.
Références
Andrew, M, Paes, B, Milner, R, Johnston, M, Mitchell, L, Tollefsen, DM, et al.. Development of the human coagulation system in the full-term infant. Blood 1987;70:165–72. https://doi.org/10.1182/blood.v70.1.165.165.
Andrew, M, Paes, B, Milner, R, Johnston, M, Mitchell, L, Tollefsen, DM, et al.. Development of the human coagulation system in the healthy premature infant. Blood 1988;72:1651–7. https://doi.org/10.1182/blood.v72.5.1651.bloodjournal7251651.
Andrew, M, Vegh, P, Johnston, M, Bowker, J, Ofosu, F, Mitchell, L. Maturation of the hemostatic system during childhood. Blood 1992;80:1998–2005. https://doi.org/10.1182/blood.v80.8.1998.bloodjournal8081998.
Lippi, G, Franchini, M, Montagnana, M, Guidi, G. Coagulation testing in pediatric patients: the young are not just miniature adults. Semin Thromb Hemost 2007;33:816–20. https://doi.org/10.1055/s-2007-1000373.
Pichler, E, Pichler, L. The neonatal coagulation system and the vitamin K deficiency bleeding - a mini review. Wien Med Wochenschr 2008;158:385–95. https://doi.org/10.1007/s10354-008-0538-7.
Toulon, P. Developmental hemostasis: laboratory and clinical implications. Int J Lab Hematol 2016;38:66–77. https://doi.org/10.1111/ijlh.12531.
Attard, C, van der Straaten, T, Karlaftis, V, Monagle, P, Ignjatovic, V. Developmental haemostasis: age-specific differences in the quantity of haemostatic proteins. J Thromb Haemostasis 2013;11:1850–4. https://doi.org/10.1111/jth.12372.
Monagle, P, Barnes, C, Ignjatovic, V, Furmedge, J, Newall, F, Chan, A, et al.. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemostasis 2006;95:362–72. https://doi.org/10.1160/TH05-01-0047.
Toulon, P, Berruyer, M, Brionne-François, M, Grand, F, Lasne, D, Telion, C, et al.. Age dependency for coagulation parameters in paediatric populations. Thromb Haemostasis 2016;116:9–16. https://doi.org/10.1160/th15-12-0964.
Grijalva, J, Vakili, K. Neonatal liver physiology. Semin Pediatr Surg 2013;22:185–9. https://doi.org/10.1053/j.sempedsurg.2013.10.006.
Orkin, SH, Nathan, DG, Ginsburg, D, Look, AT, Fisher, DE, Lux, SE. Nathan and Oski’s hematology and oncology of infancy and childhood, 8th ed. Philadelphia, PA: Elsevier/Saunders; 2015.
Lippi, G, Salvagno, GL, Rugolotto, S, Chiaffoni, GP, Padovani, EM, Franchini, M, et al.. Routine coagulation tests in newborn and young infants. J Thromb Thrombolysis 2007;24:153–5. https://doi.org/10.1007/s11239-007-0046-4.
Weidhofer, C, Meyer, E, Ristl, R, Wiedemann, H, Cadamuro, J, Kipman, U, et al.. Dynamic reference intervals for coagulation parameters from infancy to adolescence. Clin Chim Acta 2018;482:124–35. https://doi.org/10.1016/j.cca.2018.04.003.
Strauss, T, Sidlik-Muskatel, R, Kenet, G. Developmental hemostasis: primary hemostasis and evaluation of platelet function in neonates. Semin Fetal Neonatal Med 2011;16:301–4. https://doi.org/10.1016/j.siny.2011.07.001.
Sola-Visner, M. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact of therapies. Hematol Am Soc Hematol Educ Progr 2012;2012:506–11. https://doi.org/10.1182/asheducation.v2012.1.506.3798532.
Haley, KM, Recht, M, McCarty, OJT. Neonatal platelets: mediators of primary hemostasis in the developing hemostatic system. Pediatr Res 2014;76:230–7. https://doi.org/10.1038/pr.2014.87.
Wiedmeier, SE, Henry, E, Sola-Visner, MC, Christensen, RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009;29:130–6. https://doi.org/10.1038/jp.2008.141.
Sillesen, A-S, Raja, AA, Pihl, C, Vøgg, ROB, Hedegaard, M, Emmersen, P, et al.. Copenhagen Baby Heart Study: a population study of newborns with prenatal inclusion. Eur J Epidemiol 2019;34:79–90. https://doi.org/10.1007/s10654-018-0448-y.
Vøgg, ROB, Basit, S, Raja, AA, Sillesen, A-S, Pihl, C, Vejlstrup, N, et al.. Cohort profile: the Copenhagen Baby Heart Study (CBHS). Int J Epidemiol 2021 Aug 17. https://doi.org/10.1093/ije/dyab147 [Epub ahead of print].
Baker, P, Platton, S, Gibson, C, Gray, E, Jennings, I, Murphy, P, et al.. Guidelines on the laboratory aspects of assays used in haemostasis and thrombosis. Br J Haematol 2020;191:347–62. https://doi.org/10.1111/bjh.16776.
Rigshospitalets Labportal [Online]. Available from: https://labportal.rh.dk/.
Ekelund, CK, Kopp, TI, Tabor, A, Petersen, OB. The Danish fetal medicine database. Clin Epidemiol 2016;8:479–83. https://doi.org/10.2147/clep.s99477.
Maršál, K, Persson, PH, Larsen, T, Lilja, H, Selbing, A, Sultan, B. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr Int J Paediatr 1996;85:843–8. https://doi.org/10.1111/j.1651-2227.1996.tb14164.x.
Burtis, CA, Ashwood, ER, Bruns, DE. Tietz textbook of clinical chemistry and molecular diagnostics, 5th ed. St. Lois, MO: Elsevier/Saunders; 2012.
Favaloro, EJ, Mohammed, S, Vong, R, McVicker, W, Chapman, K, Swanepoel, P, et al.. Verification of the ACL top 50 family (350, 550, and 750) for harmonization of routine coagulation assays in a large network of 60 laboratories. Am J Clin Pathol 2021;156:661–78. https://doi.org/10.1093/ajcp/aqab004.
Williams, MD, Chalmers, EA, Gibson, BES. The investigation and management of neonatal haemostasis and thrombosis. Br J Haematol 2002;119:295–309. https://doi.org/10.1046/j.1365-2141.2002.03674.x.
Sankar, MJ, Chandrasekaran, A, Kumar, P, Thukral, A, Agarwal, R, Paul, VK. Vitamin K prophylaxis for prevention of vitamin K deficiency bleeding: a systematic review. J Perinatol 2016;36:S29–35. https://doi.org/10.1038/jp.2016.30.
Ng, E, Loewy, AD. Position statement: guidelines for vitamin K prophylaxis in newborns: a joint statement of the Canadian Paediatric Society and the College of Family Physicians of Canada. Can Fam Physician 2018;64:736–9.
Shearer, MJ. Vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev 2009;23:49–59. https://doi.org/10.1016/j.blre.2008.06.001.
Kuhle, S, Male, C, Mitchell, L. Developmental hemostasis: pro- and anticoagulant systems during childhood. Semin Thromb Hemost 2003;29:329–38. https://doi.org/10.1055/s-2003-42584.
Raffaeli, G, Tripodi, A, Manzoni, F, Scalambrino, E, Pesenti, N, Amodeo, I, et al.. Is placental blood a reliable source for the evaluation of neonatal hemostasis at birth? Transfusion 2020;60:1069–77. https://doi.org/10.1111/trf.15785.
Reverdiau-Moalic, P, Delahousse, B, Body, G, Bardos, P, Leroy, J, Gruel, Y. Evolution of blood coagulation activators and inhibitors in the healthy human fetus. Blood 1996;88:900–6. https://doi.org/10.1182/blood.v88.3.900.bloodjournal883900.
Sibai, B, Dekker, G, Kupferminc, M. Pre-eclampsia. Lancet 2005;365:785–99. https://doi.org/10.1016/s0140-6736(05)71003-5.
Li, X, Zhang, W, Lin, J, Liu, H, Yang, Z, Teng, Y, et al.. Preterm birth, low birthweight, and small for gestational age among women with preeclampsia: does maternal age matter? Pregnancy Hypertens 2018;13:260–6. https://doi.org/10.1016/j.preghy.2018.07.004.
Armengaud, J-B, Ma, RCW, Siddeek, B, Visser, GHA, Simeoni, U. Offspring of mothers with hyperglycaemia in pregnancy: the short term and long-term impact. What is new? Diabetes Res Clin Pract 2018;145:155–66. https://doi.org/10.1016/j.diabres.2018.07.039.
Masalin, S, Laine, MK, Kautiainen, H, Gissler, M, Raina, M, Pennanen, P, et al.. Impact of maternal height and gestational diabetes mellitus on offspring birthweight. Diabetes Res Clin Pract 2019;148:110–8. https://doi.org/10.1016/j.diabres.2019.01.004.
Castellone, DD. Establishing reference intervals in the coagulation laboratory. Int J Lab Hematol 2017;39:121–7. https://doi.org/10.1111/ijlh.12661.