Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions.
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
received:
22
12
2020
accepted:
27
09
2021
pubmed:
13
11
2021
medline:
13
11
2021
entrez:
12
11
2021
Statut:
ppublish
Résumé
Electron spin resonance (ESR) spectroscopy is a crucial tool, through spin labelling, in investigations of the chemical structure of materials and of the electronic structure of materials associated with unpaired spins. ESR spectra measured in molecular systems, however, are established on large ensembles of spins and usually require a complicated structural analysis. Recently, the combination of scanning tunnelling microscopy with ESR has proved to be a powerful tool to image and coherently control individual atomic spins on surfaces. Here we extend this technique to single coordination complexes-iron phthalocyanines (FePc)-and investigate the magnetic interactions between their molecular spin with either another molecular spin (in FePc-FePc dimers) or an atomic spin (in FePc-Ti pairs). We show that the molecular spin density of FePc is both localized at the central Fe atom and also distributed to the ligands (Pc), which yields a strongly molecular-geometry-dependent exchange coupling.
Identifiants
pubmed: 34764471
doi: 10.1038/s41557-021-00827-7
pii: 10.1038/s41557-021-00827-7
doi:
Banques de données
figshare
['10.6084/m9.figshare.16574534.v1']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
59-65Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Atzori, M. & Sessoli, R. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).
pubmed: 31287678
doi: 10.1021/jacs.9b00984
Wrachtrup, J., von Borczyskowski, C., Bernard, J., Orrit, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).
doi: 10.1038/363244a0
Köhler, J. et al. Magnetic resonance of a single molecular spin. Nature 363, 242–244 (1993).
doi: 10.1038/363242a0
Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).
pubmed: 33184235
doi: 10.1126/science.abb9352
Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).
pubmed: 15254532
doi: 10.1038/nature02658
Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).
pubmed: 26847544
doi: 10.1126/science.aad8022
Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).
doi: 10.1038/s42254-019-0055-1
Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).
pubmed: 22895342
doi: 10.1038/nature11341
Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).
pubmed: 24904159
doi: 10.1126/science.1249802
Tesi, L. et al. Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits. Chem. Sci. 7, 2074–2083 (2016).
pubmed: 29899933
doi: 10.1039/C5SC04295J
Graham, M. J. et al. Influence of electronic spin and spin–orbit coupling on decoherence in mononuclear transition metal complexes. J. Am. Chem. Soc. 136, 7623–7626 (2014).
pubmed: 24836983
doi: 10.1021/ja5037397
Seifert, T. S. et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 K. Phys. Rev. Res. 2, 013032 (2020).
doi: 10.1103/PhysRevResearch.2.013032
Natterer, F. D. et al. Upgrade of a low-temperature scanning tunneling microscope for electron-spin resonance. Rev. Sci. Instrum. 90, 013706 (2019).
pubmed: 30709206
doi: 10.1063/1.5065384
Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).
pubmed: 26494753
doi: 10.1126/science.aac8703
Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).
pubmed: 30337408
doi: 10.1126/science.aat7047
Yang, K. et al. Electrically controlled nuclear polarization of individual atoms. Nat. Nanotechnol. 13, 1120–1125 (2018).
pubmed: 30397285
doi: 10.1038/s41565-018-0296-7
Durkan, C. & Welland, M. E. Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance. Appl. Phys. Lett. 80, 458–460 (2002).
doi: 10.1063/1.1434301
Hiraoka, R. et al. Single-molecule quantum dot as a Kondo simulator. Nat. Commun. 8, 16012 (2017).
pubmed: 28665404
pmcid: 5497065
doi: 10.1038/ncomms16012
Mugarza, A. et al. Electronic and magnetic properties of molecule–metal interfaces: transition-metal phthalocyanines adsorbed on Ag(100). Phys. Rev. B 85, 155437 (2012).
doi: 10.1103/PhysRevB.85.155437
Yang, K. et al. Tunable giant magnetoresistance in a single-molecule junction. Nat. Commun. 10, 3599 (2019).
pubmed: 31399599
pmcid: 6689026
doi: 10.1038/s41467-019-11587-x
Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).
pubmed: 18297126
doi: 10.1038/nmat2133
Bae, Y. et al. Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions. Sci. Adv. 4, eaau4159 (2018).
pubmed: 30430136
pmcid: 6226279
doi: 10.1126/sciadv.aau4159
Willke, P., Yang, K., Bae, Y., Heinrich, A. J. & Lutz, C. P. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 15, 1005–1010 (2019).
doi: 10.1038/s41567-019-0573-x
Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009).
pubmed: 19518750
doi: 10.1103/PhysRevLett.102.167203
Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, 2012).
Yang, K. et al. Tuning the exchange bias on a single atom from 1 mT to 10 T. Phys. Rev. Lett. 122, 227203 (2019).
pubmed: 31283288
doi: 10.1103/PhysRevLett.122.227203
Yan, S., Choi, D.-J., Burgess, J. A. J., Rolf-Pissarczyk, S. & Loth, S. Control of quantum magnets by atomic exchange bias. Nat. Nanotechnol. 10, 40–45 (2015).
pubmed: 25502311
doi: 10.1038/nnano.2014.281
Assour, J. M. & Kahn, W. K. Electron spin resonance of α- and β-cobalt phthalocyanine. J. Am. Chem. Soc. 87, 207–212 (1965).
doi: 10.1021/ja01080a013
Konarev, D. V. et al. Ionic compound containing iron phthalocyanine (Fe
pubmed: 23033119
doi: 10.1039/c2dt31587d
Wolf, E. L. & Losee, D. L. G-shifts in the ‘s-d’ exchange theory of zero-bias tunneling anomalies. Phys. Lett. A 29, 334–335 (1969)
doi: 10.1016/0375-9601(69)90156-X
Barnes, S. E. Theory of electron spin resonance of magnetic ions in metals. Adv. Phys. 30, 801–938 (1981).
doi: 10.1080/00018738100101447
Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).
pubmed: 29286811
doi: 10.1103/PhysRevLett.119.227206
Choi, T. et al. Atomic-scale sensing of the magnetic dipolar field from single atoms. Nat. Nanotechnol. 12, 420–424 (2017).
pubmed: 28263962
doi: 10.1038/nnano.2017.18
Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 74, 5737–5743 (1981).
doi: 10.1063/1.440939
Czap, G. et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science 364, 670–673 (2019).
pubmed: 31097665
doi: 10.1126/science.aaw7505
Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016).
pubmed: 27109358
pmcid: 4848482
doi: 10.1038/ncomms11377
Zhang, X. et al. Electron spin resonance of single iron-phthalocyanine molecules and role of their non-localized spins in magnetic interaction (source data, codes and raw images). Figshare https://doi.org/10.6084/m9.figshare.16574534.v1 (2021).
Paul, W. et al. Control of the millisecond spin lifetime of an electrically probed atom. Nat. Phys. 13, 403–407 (2017).
doi: 10.1038/nphys3965
Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).
pubmed: 17503926
doi: 10.1063/1.2432410
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
pubmed: 21832390
doi: 10.1088/0953-8984/21/39/395502
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
pubmed: 29064822
doi: 10.1088/1361-648X/aa8f79
Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 1–17 (2018).
doi: 10.1038/s41524-018-0127-2
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
doi: 10.1103/PhysRevLett.77.3865
Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).
pubmed: 27077966
doi: 10.1021/acs.chemrev.5b00533