Circadian dynamics of the teleost skin immune-microbiome interface.
Aquaculture
Circadian rhythm
Clock gene expression
Fish
Immunity
Metagenome
Microbiome
Parasite infection
Photoperiod
Journal
Microbiome
ISSN: 2049-2618
Titre abrégé: Microbiome
Pays: England
ID NLM: 101615147
Informations de publication
Date de publication:
16 11 2021
16 11 2021
Historique:
received:
26
08
2021
accepted:
28
08
2021
entrez:
16
11
2021
pubmed:
17
11
2021
medline:
22
3
2022
Statut:
epublish
Résumé
Circadian rhythms of host immune activity and their microbiomes are likely pivotal to health and disease resistance. The integration of chronotherapeutic approaches to disease mitigation in managed animals, however, is yet to be realised. In aquaculture, light manipulation is commonly used to enhance growth and control reproduction but may have unknown negative consequences for animal health. Infectious diseases are a major barrier to sustainable aquaculture and understanding the circadian dynamics of fish immunity and crosstalk with the microbiome is urgently needed. Here, using rainbow trout (Oncorhynchus mykiss) as a model, we combine 16S rRNA metabarcoding, metagenomic sequencing and direct mRNA quantification methods to simultaneously characterise the circadian dynamics of skin clock and immune gene expression, and daily changes of skin microbiota. We demonstrate daily rhythms in fish skin immune expression and microbiomes, which are modulated by photoperiod and parasitic lice infection. We identify putative associations of host clock and immune gene profiles with microbial composition. Our results suggest circadian perturbation, that shifts the magnitude and timing of immune and microbiota activity, is detrimental to fish health. The substantial circadian dynamics and fish host expression-microbiome relationships we find represent a valuable foundation for investigating the utility of chronotherapies in aquaculture, and more broadly contributes to our understanding of the role of microbiomes in circadian health of vertebrates. Video Abstract.
Sections du résumé
BACKGROUND
Circadian rhythms of host immune activity and their microbiomes are likely pivotal to health and disease resistance. The integration of chronotherapeutic approaches to disease mitigation in managed animals, however, is yet to be realised. In aquaculture, light manipulation is commonly used to enhance growth and control reproduction but may have unknown negative consequences for animal health. Infectious diseases are a major barrier to sustainable aquaculture and understanding the circadian dynamics of fish immunity and crosstalk with the microbiome is urgently needed.
RESULTS
Here, using rainbow trout (Oncorhynchus mykiss) as a model, we combine 16S rRNA metabarcoding, metagenomic sequencing and direct mRNA quantification methods to simultaneously characterise the circadian dynamics of skin clock and immune gene expression, and daily changes of skin microbiota. We demonstrate daily rhythms in fish skin immune expression and microbiomes, which are modulated by photoperiod and parasitic lice infection. We identify putative associations of host clock and immune gene profiles with microbial composition. Our results suggest circadian perturbation, that shifts the magnitude and timing of immune and microbiota activity, is detrimental to fish health.
CONCLUSIONS
The substantial circadian dynamics and fish host expression-microbiome relationships we find represent a valuable foundation for investigating the utility of chronotherapies in aquaculture, and more broadly contributes to our understanding of the role of microbiomes in circadian health of vertebrates. Video Abstract.
Identifiants
pubmed: 34782020
doi: 10.1186/s40168-021-01160-4
pii: 10.1186/s40168-021-01160-4
pmc: PMC8594171
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Langues
eng
Sous-ensembles de citation
IM
Pagination
222Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R010609/1
Pays : United Kingdom
Informations de copyright
© 2021. The Author(s).
Références
Gut Microbes. 2014;5(6):737-47
pubmed: 25536157
Nat Metab. 2019 Jan;1(1):34-46
pubmed: 32694818
Nat Ecol Evol. 2019 Apr;3(4):552-560
pubmed: 30886375
Fish Shellfish Immunol. 2020 Oct;105:438-445
pubmed: 32653586
Immunity. 2014 Feb 20;40(2):178-86
pubmed: 24560196
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):594-9
pubmed: 22184244
J Immunol. 2010 Nov 15;185(10):5796-805
pubmed: 20944004
PeerJ. 2019 Jul 26;7:e7359
pubmed: 31388474
Immunology. 2020 Dec;161(4):278-290
pubmed: 33090484
Nat Commun. 2014 Apr 22;5:3657
pubmed: 24755649
Microbiome. 2019 May 23;7(1):79
pubmed: 31122279
Bioinformatics. 2015 May 15;31(10):1674-6
pubmed: 25609793
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Symp Soc Exp Biol. 2004;(55):107-29; discussion 243-5
pubmed: 15446447
Fish Shellfish Immunol. 2020 Sep;104:192-201
pubmed: 32534231
Front Microbiol. 2014 Jun 02;5:207
pubmed: 24917852
J Pineal Res. 2006 Oct;41(3):261-6
pubmed: 16948787
Sci Rep. 2020 Feb 11;10(1):2340
pubmed: 32047192
ISME J. 2012 Aug;6(8):1621-4
pubmed: 22402401
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Genome Biol. 2014;15(12):550
pubmed: 25516281
Fish Shellfish Immunol. 2016 Aug;55:613-22
pubmed: 27346154
Proc Biol Sci. 2020 May 13;287(1926):20200184
pubmed: 32372688
Conserv Physiol. 2018 Apr 13;6(1):coy016
pubmed: 29686874
Curr Opin Biotechnol. 2021 Aug 5;73:121-127
pubmed: 34365079
Int Immunopharmacol. 2019 May;70:362-371
pubmed: 30852291
Nat Biotechnol. 2020 Jun;38(6):685-688
pubmed: 32483366
Curr Biol. 2020 May 4;30(9):1740-1747.e6
pubmed: 32220315
Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt B):2274-2283
pubmed: 29241666
Nat Commun. 2018 Apr 19;9(1):1553
pubmed: 29674717
Dis Aquat Organ. 2011 Dec 6;97(2):155-65
pubmed: 22303632
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12843-8
pubmed: 17646651
Nature. 2016 Jul 06;535(7610):65-74
pubmed: 27383981
J Biol Rhythms. 2013 Aug;28(4):272-7
pubmed: 23929554
Fish Shellfish Immunol. 2011 Mar;30(3):824-9
pubmed: 21237272
Cell. 1999 Jan 22;96(2):271-90
pubmed: 9988221
Dev Comp Immunol. 2015 Jan;48(1):178-91
pubmed: 25453579
Nature. 2011 Feb 3;470(7332):110-4
pubmed: 21293378
Proc Biol Sci. 2020 Jul 8;287(1930):20201017
pubmed: 32605431
Cell Rep. 2018 Oct 9;25(2):424-436
pubmed: 30304682
Bioinformatics. 2012 Apr 1;28(7):1033-4
pubmed: 22332237
J Biol Rhythms. 2017 Dec;32(6):516-533
pubmed: 28845736
Front Immunol. 2017 May 15;8:559
pubmed: 28555138
J Adv Res. 2015 May;6(3):283-300
pubmed: 26257926
Curr Biol. 2007 May 15;17(10):R353-5
pubmed: 17502084
PLoS One. 2016 Oct 5;11(10):e0163962
pubmed: 27706213
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Immunology. 2014 May;142(1):24-31
pubmed: 24329495
Genome Med. 2016 Apr 27;8(1):51
pubmed: 27122046
J Appl Microbiol. 2017 Jul;123(1):2-17
pubmed: 28176435
Genome Biol. 2019 Nov 14;20(1):238
pubmed: 31727128
Pharmacol Rev. 2017 Apr;69(2):161-199
pubmed: 28351863
PLoS Comput Biol. 2015 Mar 20;11(3):e1004094
pubmed: 25793520
Sci Immunol. 2020 Feb 7;5(44):
pubmed: 32034088
Appl Environ Microbiol. 2013 Aug;79(16):4974-84
pubmed: 23770898
PLoS Comput Biol. 2017 Feb 21;13(2):e1005404
pubmed: 28222096
PLoS Pathog. 2019 Oct 31;15(10):e1007891
pubmed: 31671152
Cell Host Microbe. 2015 May 13;17(5):681-9
pubmed: 25891358
Fish Shellfish Immunol. 2014 Oct;40(2):624-33
pubmed: 25150450
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Genome Res. 2007 Mar;17(3):377-86
pubmed: 17255551
Front Immunol. 2018 Nov 09;9:2569
pubmed: 30473697
Vet Microbiol. 2007 Jun 21;122(3-4):373-80
pubmed: 17336468
Dev Comp Immunol. 2011 Jul;35(7):752-63
pubmed: 21352850
J Fish Dis. 2011 Jul;34(7):499-507
pubmed: 21535012
Life Sci. 2017 Mar 15;173:94-106
pubmed: 28214594
Front Immunol. 2020 Aug 14;11:1783
pubmed: 32922391
Dev Comp Immunol. 2017 Aug;73:156-162
pubmed: 28365195
BMC Genomics. 2018 Oct 1;19(1):723
pubmed: 30285628
Biology (Basel). 2019 Mar 19;8(1):
pubmed: 30893815
Dev Comp Immunol. 2021 Feb;115:103886
pubmed: 33045272
Biol Pharm Bull. 2021;44(8):1160-1165
pubmed: 34334501
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Ann Rev Mar Sci. 2015;7:471-96
pubmed: 25251276
PeerJ. 2015 Oct 08;3:e1319
pubmed: 26500826
Nat Rev Immunol. 2013 Mar;13(3):190-8
pubmed: 23391992
Cell Metab. 2014 Dec 2;20(6):1006-17
pubmed: 25470548
Nucleic Acids Res. 2017 Jul 3;45(W1):W180-W188
pubmed: 28449106
PLoS Pathog. 2017 Feb 2;13(2):e1006160
pubmed: 28152043
J Surg Res. 2008 Mar;145(1):5-12
pubmed: 18279697
Gut Microbes. 2016;7(2):126-35
pubmed: 26979110
Addict Biol. 2019 Sep;24(5):921-934
pubmed: 30307084
Nat Biotechnol. 2019 Aug;37(8):852-857
pubmed: 31341288
J Neuroimmunol. 2005 Mar;160(1-2):102-9
pubmed: 15710463
Mol Cell Biol. 2016 Nov 14;36(23):2868-2876
pubmed: 27601584
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10479-84
pubmed: 26240359
PLoS One. 2016 Sep 19;11(9):e0163148
pubmed: 27643503