Pathogenic neurofibromatosis type 1 (NF1) RNA splicing resolved by targeted RNAseq.
Journal
NPJ genomic medicine
ISSN: 2056-7944
Titre abrégé: NPJ Genom Med
Pays: England
ID NLM: 101685193
Informations de publication
Date de publication:
15 Nov 2021
15 Nov 2021
Historique:
received:
06
05
2021
accepted:
15
10
2021
entrez:
16
11
2021
pubmed:
17
11
2021
medline:
17
11
2021
Statut:
epublish
Résumé
Neurofibromatosis type 1 (NF1) is caused by loss-of-function variants in the NF1 gene. Approximately 10% of these variants affect RNA splicing and are either missed by conventional DNA diagnostics or are misinterpreted by in silico splicing predictions. Therefore, a targeted RNAseq-based approach was designed to detect pathogenic RNA splicing and associated pathogenic DNA variants. For this method RNA was extracted from lymphocytes, followed by targeted RNAseq. Next, an in-house developed tool (QURNAs) was used to calculate the enrichment score (ERS) for each splicing event. This method was thoroughly tested using two different patient cohorts with known pathogenic splice-variants in NF1. In both cohorts all 56 normal reference transcript exon splice junctions, 24 previously described and 45 novel non-reference splicing events were detected. Additionally, all expected pathogenic splice-variants were detected. Eleven patients with NF1 symptoms were subsequently tested, three of which have a known NF1 DNA variant with a putative effect on RNA splicing. This effect could be confirmed for all 3. The other eight patients were previously without any molecular confirmation of their NF1-diagnosis. A deep-intronic pathogenic splice variant could now be identified for two of them (25%). These results suggest that targeted RNAseq can be successfully used to detect pathogenic RNA splicing variants in NF1.
Identifiants
pubmed: 34782607
doi: 10.1038/s41525-021-00258-w
pii: 10.1038/s41525-021-00258-w
pmc: PMC8593033
doi:
Types de publication
Journal Article
Langues
eng
Pagination
95Informations de copyright
© 2021. The Author(s).
Références
Hum Mutat. 2008 Sep;29(9):E173-93
pubmed: 18546366
PLoS Genet. 2011 Nov;7(11):e1002371
pubmed: 22125493
Int J Cancer. 2019 Jul 15;145(2):401-414
pubmed: 30623411
Nat Commun. 2020 May 27;11(1):2523
pubmed: 32461616
Clin Genet. 2006 Jul;70(1):1-13
pubmed: 16813595
Genet Med. 1999 Sep-Oct;1(6):248-53
pubmed: 11258625
Ann Neurol. 1999 Nov;46(5):777-82
pubmed: 10553997
Hum Mutat. 2009 Jan;30(1):107-14
pubmed: 18693280
Neurosci Lett. 1996 Jun 21;211(2):85-8
pubmed: 8830850
Hum Genet. 2017 Jun;136(6):665-677
pubmed: 28349240
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Science. 1990 Jul 13;249(4965):181-6
pubmed: 2134734
Hum Mutat. 2013 Nov;34(11):1510-8
pubmed: 23913538
Breast Cancer Res Treat. 2011 Oct;129(3):971-82
pubmed: 21638052
Hum Mol Genet. 2000 Dec 12;9(20):3055-64
pubmed: 11115850
Hum Mutat. 1996;7(2):172-5
pubmed: 8829638
Hum Mutat. 2012 Aug;33(8):1228-38
pubmed: 22505045
Hum Mutat. 2007 Jun;28(6):599-612
pubmed: 17311297
Hum Mol Genet. 1995 May;4(5):915-20
pubmed: 7633452
Clin Genet. 2014 Apr;85(4):318-27
pubmed: 23656349
Genet Med. 2020 Dec;22(12):2081-2088
pubmed: 32773772
Hum Mutat. 2000;15(1):7-12
pubmed: 10612815
EBioMedicine. 2016 May;7:212-20
pubmed: 27322474
Cell. 1990 Jul 13;62(1):187-92
pubmed: 1694727
Genes (Basel). 2018 Apr 17;9(4):
pubmed: 29673180
Genome Res. 2018 Jan;28(1):100-110
pubmed: 29162642
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Nat Struct Mol Biol. 2012 Jun 17;19(7):719-21
pubmed: 22705790
J Mol Diagn. 2011 Mar;13(2):113-22
pubmed: 21354044
Genomics. 1990 Aug;7(4):555-65
pubmed: 2117566
Cancer Res. 1997 Aug 1;57(15):3288-93
pubmed: 9242462
Hum Mol Genet. 2000 Jan 22;9(2):237-47
pubmed: 10607834
RNA Biol. 2012 Jun;9(6):911-23
pubmed: 22617876
Hum Mutat. 2000;15(6):541-55
pubmed: 10862084
J Med Genet. 2007 Feb;44(2):81-8
pubmed: 17105749
Hum Mutat. 2004 Dec;24(6):491-501
pubmed: 15523642
Arch Neurol. 1988 May;45(5):575-8
pubmed: 3128965
Nucleic Acids Res. 2018 Jan 4;46(D1):D1062-D1067
pubmed: 29165669
FEBS Lett. 2002 Jul 3;522(1-3):71-6
pubmed: 12095621