Fluid-Screen as a real time dielectrophoretic method for universal microbial capture.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 11 2021
15 11 2021
Historique:
received:
10
03
2021
accepted:
20
10
2021
entrez:
16
11
2021
pubmed:
17
11
2021
medline:
17
11
2021
Statut:
epublish
Résumé
Bacterial culture methods, e.g. Plate Counting Method (PCM), are a gold standard in the assessment of microbial contamination in multitude of human industries. They are however slow, labor intensive, and prone to manual errors. Dielectrophoresis (DEP) has shown great promise for particle separation for decades; however, it has not yet been widely applied in routine laboratory setting. This paper provides an overview of a new DEP microbial capture and separation method called Fluid-Screen (FS), that achieves very fast, efficient, reliable and repeatable capture and separation of microbial cells. Method verification experiments demonstrated that the FS system captured 100% of bacteria in test samples, a capture efficiency much higher than previously reported for similar technology. Data generated supports the superiority of the FS method as compared to the established Plate Counting Method (PCM), that is routinely used to detect bacterial contamination in healthcare, pharmacological and food industries. We demonstrate that the FS method is universal and can capture and separate different species of bacteria and fungi to viruses, from various sample matrices (i.e. human red blood cells, mammalian cells).
Identifiants
pubmed: 34782647
doi: 10.1038/s41598-021-01600-z
pii: 10.1038/s41598-021-01600-z
pmc: PMC8594773
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
22222Informations de copyright
© 2021. The Author(s).
Références
Anal Chem. 1998 Jun 1;70(11):2321-6
pubmed: 9624903
Micromachines (Basel). 2019 Jun 24;10(6):
pubmed: 31238556
Bioanalysis. 2015;7(3):353-71
pubmed: 25697193
Microsyst Nanoeng. 2018 Sep 10;4:23
pubmed: 31057911
Bone Marrow Transplant. 1996 Oct;18(4):777-82
pubmed: 8899194
Biotechnol Prog. 2016 Jul 8;32(4):823-39
pubmed: 27160415
Sensors (Basel). 2017 Feb 24;17(3):
pubmed: 28245552
Nat Biotechnol. 1998 Jun;16(6):541-6
pubmed: 9624684
Int J Mol Med. 2005 Jun;15(6):913-20
pubmed: 15870893
J Hematother Stem Cell Res. 1999 Oct;8(5):481-90
pubmed: 10791899
Nanoscale Res Lett. 2014 Jun 27;9(1):324
pubmed: 25024685
Anal Chem. 2002 Jul 15;74(14):3362-71
pubmed: 12139041
Anal Chem. 2000 Feb 15;72(4):832-9
pubmed: 10701270
Biophys J. 2006 Nov 15;91(10):3937-45
pubmed: 16950844
Micromachines (Basel). 2020 Sep 25;11(10):
pubmed: 32992689
IEEE J Transl Eng Health Med. 2020 Jun 24;8:4300405
pubmed: 32656002
J Bacteriol. 1940 Apr;39(4):389-97
pubmed: 16560300
Biomicrofluidics. 2011 Sep;5(3):32005-3200515
pubmed: 22007268
Micromachines (Basel). 2019 Jul 04;10(7):
pubmed: 31277396
Colloids Surf B Biointerfaces. 2017 Jun 1;154:365-372
pubmed: 28365426
Sci Rep. 2019 Jul 16;9(1):10279
pubmed: 31311947
Lab Chip. 2010 Mar 21;10(6):783-8
pubmed: 20221568
Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):860-4
pubmed: 7846067
Electrophoresis. 2021 Mar;42(5):539-564
pubmed: 33191521