High electron mobility in strained GaAs nanowires.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 Nov 2021
Historique:
received: 26 01 2021
accepted: 31 10 2021
entrez: 18 11 2021
pubmed: 19 11 2021
medline: 19 11 2021
Statut: epublish

Résumé

Transistor concepts based on semiconductor nanowires promise high performance, lower energy consumption and better integrability in various platforms in nanoscale dimensions. Concerning the intrinsic transport properties of electrons in nanowires, relatively high mobility values that approach those in bulk crystals have been obtained only in core/shell heterostructures, where electrons are spatially confined inside the core. Here, it is demonstrated that the strain in lattice-mismatched core/shell nanowires can affect the effective mass of electrons in a way that boosts their mobility to distinct levels. Specifically, electrons inside the hydrostatically tensile-strained gallium arsenide core of nanowires with a thick indium aluminium arsenide shell exhibit mobility values 30-50 % higher than in equivalent unstrained nanowires or bulk crystals, as measured at room temperature. With such an enhancement of electron mobility, strained gallium arsenide nanowires emerge as a unique means for the advancement of transistor technology.

Identifiants

pubmed: 34789741
doi: 10.1038/s41467-021-27006-z
pii: 10.1038/s41467-021-27006-z
pmc: PMC8599471
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6642

Informations de copyright

© 2021. The Author(s).

Références

Gu, J. J. et al. 20–80nm Channel length InGaAs gate-all-around nanowire MOSFETs with EOT=1.2nm and lowest SS=63mV/dec. International Electron Devices Meeting; 2012 Dec 10–13; San Francisco, CA, USA. IEEE; 2012.
Egard, M. et al. Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(Max) > 20 GHz. Nano Lett. 10, 809–812 (2010).
pubmed: 20131812 doi: 10.1021/nl903125m
Colinge, J. P. et al. Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010).
pubmed: 20173755 doi: 10.1038/nnano.2010.15
Heinzig, A., Slesazeck, S., Kreupl, F., Mikolajick, T. & Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 12, 119–124 (2012).
pubmed: 22111808 doi: 10.1021/nl203094h
Riel, H., Wernersson, L. E., Hong, M. W. & del Alamo, J. A. III-V compound semiconductor transistors-from planar to nanowire structures. MRS Bull. 39, 668–677 (2014).
doi: 10.1557/mrs.2014.137
Morkötter, S. et al. Demonstration of confined electron gas and steep-slope behavior in delta-doped GaAs-AlGaAs core-shell nanowire transistors. Nano Lett. 15, 3295–3302 (2015).
pubmed: 25923841 doi: 10.1021/acs.nanolett.5b00518
Chuang, S. et al. Ballistic InAs nanowire transistors. Nano Lett. 13, 555–558 (2013).
pubmed: 23256503 doi: 10.1021/nl3040674
Gooth, J. et al. Ballistic one-dimensional InAs nanowire cross-junction interconnects. Nano Lett. 17, 2596–2602 (2017).
pubmed: 28334529 doi: 10.1021/acs.nanolett.7b00400
Heedt, S., Prost, W., Schubert, J., Grützmacher, D. & Schäpers, T. Ballistic transport and exchange interaction in InAs nanowire quantum point contacts. Nano Lett. 16, 3116–3123 (2016).
pubmed: 27104768 doi: 10.1021/acs.nanolett.6b00414
van Weperen, I., Plissard, S. R., Bakkers, E. P. A. M., Frolov, S. M. & Kouwenhoven, L. P. Quantized conductance in an InSb nanowire. Nano Lett. 13, 387–391 (2013).
pubmed: 23259576 doi: 10.1021/nl3035256
Irber, D. M. et al. Quantum transport and sub-band structure of modulation-doped GaAs/AlAs core-superlattice nanowires. Nano Lett. 17, 4886–4893 (2017).
pubmed: 28732167 doi: 10.1021/acs.nanolett.7b01732
Tomioka, K., Yoshimura, M. & Fukui, T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189 (2012).
pubmed: 22854778 doi: 10.1038/nature11293
Hong, Y. J. et al. Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Adv. Mater. 25, 6847–6853 (2013).
pubmed: 24115285 doi: 10.1002/adma.201302312
Joyce, H. J. et al. The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires. J. Phys. D. Appl. Phys. 50, 224001 (2017).
doi: 10.1088/1361-6463/aa6a8f
Joyce, H. J. et al. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 24, 214006 (2013).
pubmed: 23619012 doi: 10.1088/0957-4484/24/21/214006
Joyce, H. J. et al. Electron mobilities approaching bulk limits in “surface-free” GaAs nanowires. Nano Lett. 14, 5989–5994 (2014).
pubmed: 25232659 doi: 10.1021/nl503043p
Balaghi, L. et al. Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nat. Commun. 10, 2793 (2019).
pubmed: 31243278 pmcid: 6595053 doi: 10.1038/s41467-019-10654-7
Christensen, N. E. Electronic-structure of GaAs under strain. Phys. Rev. B 30, 5753–5765 (1984).
doi: 10.1103/PhysRevB.30.5753
Conesa-Boj, S. et al. Boosting hole mobility in coherently strained [110]-oriented Ge-Si core-shell nanowires. Nano Lett. 17, 2259–2264 (2017).
pubmed: 28231017 pmcid: 5391496 doi: 10.1021/acs.nanolett.6b04891
Wen, F. & Tutuc, E. Enhanced electron mobility in nonplanar tensile strained Si epitaxially grown on SixGe1-x nanowires. Nano Lett. 18, 94–100 (2018).
pubmed: 29185763 doi: 10.1021/acs.nanolett.7b03450
Joyce, H. J., Boland, J. L., Davies, C. L., Baig, S. A. & Johnston, M. B. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond. Sci. Tech. 31, 103003 (2016).
doi: 10.1088/0268-1242/31/10/103003
Bergamaschini, R., Montalenti, F. & Miglio, L. Sunburst pattern by kinetic segregation in core-shell nanowires: a phase-field study. Appl. Surf. Sci. 517, 146056 (2020).
doi: 10.1016/j.apsusc.2020.146056
Tauchnitz, T. et al. Decoupling the two roles of Ga droplets in the self-catalyzed growth of GaAs nanowires on SiOx/Si(111) substrates. Cryst. Growth Des. 17, 5276–5282 (2017).
doi: 10.1021/acs.cgd.7b00797
Birner, S. et al. nextnano: general purpose 3-D simulations. IEEE Trans. Electron Dev. 54, 2137–2142 (2007).
doi: 10.1109/TED.2007.902871
Milekhin, A. G. et al. Vibrational spectroscopy of InAlAs epitaxial layers. J. Appl. Phys. 104, 073516 (2008).
doi: 10.1063/1.2980344
Signorello, G., Karg, S., Björk, M. T., Gotsmann, B. & Riel, H. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett. 13, 917–924 (2013).
pubmed: 23237482 doi: 10.1021/nl303694c
Zardo, I. et al. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects. Phys. Rev. B 80, 245324 (2009).
doi: 10.1103/PhysRevB.80.245324
Montazeri, M. et al. Direct measure of strain and electronic structure in GaAs/GaP core-shell nanowires. Nano Lett. 10, 880–886 (2010).
pubmed: 20131863 doi: 10.1021/nl903547r
Wickboldt, P., Anastassakis, E., Sauer, R. & Cardona, M. Raman phonon piezospectroscopy in GaAs: infrared measurements. Phys. Rev. B 35, 1362–1368 (1987).
doi: 10.1103/PhysRevB.35.1362
Menéndez, J., Singh, R. & Drucker, J. Theory of strain effects on the Raman spectrum of Si-Ge core-shell nanowires. Ann. Phys. 523, 145–156 (2011).
doi: 10.1002/andp.201000106
Cerdeira, F., Buchenauer, C. J., Cardona, M. & Pollak, F. H. Stress-induced shifts of first-order Raman frequencies of diamond and zinc-blende-type semiconductors. Phys. Rev. B-Solid St. 5, 580 (1972).
doi: 10.1103/PhysRevB.5.580
Van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989).
doi: 10.1103/PhysRevB.39.1871
Fotev, I. et al. Electron dynamics in InxGa1-xAs shells around GaAs nanowires probed by terahertz spectroscopy. Nanotechnology 30, 244004 (2019).
pubmed: 30790771 doi: 10.1088/1361-6528/ab0913
Lang, D. et al. Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy. Nanotechnology 30, 084003 (2019).
pubmed: 30523880 doi: 10.1088/1361-6528/aaf5a7
Rana, R. et al. Nonlinear charge transport in InGaAs nanowires at terahertz frequencies. Nano Lett. 20, 3225–3231 (2020).
pubmed: 32227897 doi: 10.1021/acs.nanolett.9b05328
Strait, J. H. et al. Measurements of the carrier dynamics and terahertz response of oriented germanium nanowires using optical-pump terahertz-probe spectroscopy. Nano Lett. 9, 2967–2972 (2009).
pubmed: 19594164 doi: 10.1021/nl901373j
Goni, A. R., Syassen, K., Strössner, K. & Cardona, M. Pressure-dependence of the direct optical gap and refractive-index of Ge and GaAs. Semicond. Sci. Tech. 4, 246–247 (1989).
doi: 10.1088/0268-1242/4/4/015
Samara, G. A. Temperature and pressure dependences of the dielectric-constants of semiconductors. Phys. Rev. B 27, 3494–3505 (1983).
doi: 10.1103/PhysRevB.27.3494
Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001).
doi: 10.1063/1.1368156
Strauss, U., Rühle, W. W. & Köhler, K. Auger recombination in intrinsic GaAs. Appl. Phys. Lett. 62, 55–57 (1993).
doi: 10.1063/1.108817
Demichel, O., Heiss, M., Bleuse, J., Mariette, H. & Fontcuberta i Morral, A. Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 97, 201907 (2010).
doi: 10.1063/1.3519980
Parkinson, P. et al. Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 9, 3349–3353 (2009).
pubmed: 19736975 doi: 10.1021/nl9016336
Demichel, O. et al. Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method. Nano Lett. 10, 2323–2329 (2010).
pubmed: 20503995 doi: 10.1021/nl903166t
Chia, A. C. E. et al. Electrical transport and optical model of GaAs-AlInP core-shell nanowires. J. Appl. Phys. 111, 094319 (2012).
doi: 10.1063/1.4716011
Adachi, S. I. I. I.-V. ternary and quaternary compounds. In: Kasap S, Capper P, editors. Springer handbook of electronic and photonic materials. Cham: Springer; 2017.
Mics, Z., D’Angio, A., Jensen, S. A., Bonn, M. & Turchinovich, D. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime. Appl. Phys. Lett. 102, 231120 (2013).
doi: 10.1063/1.4810756
Nuss, M. C., Auston, D. H. & Capasso, F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium-arsenide. Phys. Rev. Lett. 58, 2355–2358 (1987).
pubmed: 10034724 doi: 10.1103/PhysRevLett.58.2355
Sharma, G. et al. Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs. Opt. Express 20, 18016–18024 (2012).
pubmed: 23038349 doi: 10.1364/OE.20.018016
Liu, T. H., Zhou, J. W., Liao, B. L., Singh, D. J. & Chen, G. First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs. Phys. Rev. B 95, 075206 (2017).
doi: 10.1103/PhysRevB.95.075206
Saxena, A. K. & Mudares, M. A. L. Validity of Matthiessen’s-rule for calculating electron-mobility in Ga1-xAlxAs alloys. J. Appl. Phys. 58, 2795–2797 (1985).
doi: 10.1063/1.335876
Požela, J., Požela, K. & Jucienė, V. Scattering of electrons by confined interface polar optical phonons in a double-barrier heterostructure. Semiconductors 41, 1074–1079 (2007).
doi: 10.1134/S1063782607090126
Ferreira, R. & Bastard, G. Evaluation of some scattering times for electrons in unbiased and biased single-quantum-well and multiple-quantum-well structures. Phys. Rev. B 40, 1074–1086 (1989).
doi: 10.1103/PhysRevB.40.1074
Levi AFJ. Essential electron transport for device physics. New York: AIP Publishing; 2020.
Ridley, B. K. Quantum processes in semiconductors. (Oxford: Oxford Univ. Press; 2013).
Yu, P. & Cardona, M. Fundamentals of semiconductors. Berlin Heidelberg: Springer-Verlag; 2010.
Höpfel, R. A., Shah, J., Block, D. & Gossard, A. C. Picosecond time-of-flight measurements of minority electrons in GaAs/AlGaAs quantum-well structures. Appl. Phys. Lett. 48, 148–150 (1986).
doi: 10.1063/1.96979
Dubrovskii, V. G. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures. J. Phys. D. Appl. Phys. 50, 453001 (2017).
doi: 10.1088/1361-6463/aa87a7
Heiss, M. et al. In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires. Nanotechnology 22, 195601 (2011).
pubmed: 21430322 doi: 10.1088/0957-4484/22/19/195601
Treu, J. et al. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy. Appl. Phys. Lett. 108, 053110 (2016).
doi: 10.1063/1.4941407

Auteurs

Leila Balaghi (L)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.

Si Shan (S)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.

Ivan Fotev (I)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.

Finn Moebus (F)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.

Rakesh Rana (R)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.

Tommaso Venanzi (T)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.

René Hübner (R)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.

Thomas Mikolajick (T)

Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
NaMLab gGmbH, Dresden, Germany.

Harald Schneider (H)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.

Manfred Helm (M)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.

Alexej Pashkin (A)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.

Emmanouil Dimakis (E)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany. e.dimakis@hzdr.de.

Classifications MeSH