The manifold roles of protein S-nitrosylation in the life of insulin.
Journal
Nature reviews. Endocrinology
ISSN: 1759-5037
Titre abrégé: Nat Rev Endocrinol
Pays: England
ID NLM: 101500078
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
accepted:
08
10
2021
pubmed:
19
11
2021
medline:
18
3
2022
entrez:
18
11
2021
Statut:
ppublish
Résumé
Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic β-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.
Identifiants
pubmed: 34789923
doi: 10.1038/s41574-021-00583-1
pii: 10.1038/s41574-021-00583-1
pmc: PMC8889587
mid: NIHMS1782239
doi:
Substances chimiques
Insulin
0
Sulfhydryl Compounds
0
Nitric Oxide
31C4KY9ESH
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
111-128Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL126900
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL157151
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL158507
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK128347
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK119506
Pays : United States
Informations de copyright
© 2021. Springer Nature Limited.
Références
Sonksen, P. & Sonksen, J. Insulin: understanding its action in health and disease. Br. J. Anaesth. 85, 69–79 (2000).
pubmed: 10927996
doi: 10.1093/bja/85.1.69
Fu, Z., Gilbert, E. R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9, 25–53 (2013).
pubmed: 22974359
pmcid: 3934755
doi: 10.2174/157339913804143225
Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12 (2018).
pubmed: 29480368
pmcid: 5866840
doi: 10.1007/s11906-018-0812-z
Bahadoran, Z., Mirmiran, P. & Ghasemi, A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol. Metab. 31, 118–130 (2020).
pubmed: 31690508
doi: 10.1016/j.tem.2019.10.001
Knowles, R. G. & Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 298, 249–258 (1994).
pubmed: 7510950
pmcid: 1137932
doi: 10.1042/bj2980249
Shankar, R. R., Wu, Y., Shen, H. Q., Zhu, J. S. & Baron, A. D. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49, 684–687 (2000).
pubmed: 10905473
doi: 10.2337/diabetes.49.5.684
Kurohane Kaneko, Y. & Ishikawa, T. Dual role of nitric oxide in pancreatic β-cells. J. Pharmacol. Sci. 123, 295–300 (2013).
pubmed: 24285083
doi: 10.1254/jphs.13R10CP
Perreault, M. & Marette, A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med. 7, 1138–1143 (2001).
pubmed: 11590438
doi: 10.1038/nm1001-1138
Denninger, J. W. & Marletta, M. A. Guanylate cyclase and the
pubmed: 10320667
doi: 10.1016/S0005-2728(99)00024-9
Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005).
pubmed: 15688001
doi: 10.1038/nrm1569
Sansbury, B. E. & Hill, B. G. Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med. 73, 383–399 (2014).
pubmed: 24878261
doi: 10.1016/j.freeradbiomed.2014.05.016
Li, S. et al. pCysMod: prediction of multiple cysteine modifications based on deep learning framework. Front. Cell Dev. Biol. 9, 617366 (2021).
pubmed: 33732693
pmcid: 7959776
doi: 10.3389/fcell.2021.617366
Abunimer, A. et al. Single-nucleotide variations in cardiac arrhythmias: prospects for genomics and proteomics based biomarker discovery and diagnostics. Genes (Basel) 5, 254–269 (2014).
doi: 10.3390/genes5020254
Seth, D. et al. A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol. Cell 69, e6 (2018).
doi: 10.1016/j.molcel.2017.12.025
Stomberski, C. T., Hess, D. T. & Stamler, J. S. Protein S-nitrosylation: determinants of specificity and enzymatic regulation of S-nitrosothiol-based signaling. Antioxid. Redox Signal. 30, 1331–1351 (2019).
pubmed: 29130312
pmcid: 6391618
doi: 10.1089/ars.2017.7403
Zhou, H. L. et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565, 96–100 (2019).
pubmed: 30487609
doi: 10.1038/s41586-018-0749-z
Stomberski, C. T., Zhou, H. L., Wang, L., van den Akker, F. & Stamler, J. S. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J. Biol. Chem. 294, 1568–1578 (2019).
pubmed: 30538128
doi: 10.1074/jbc.RA118.004947
Weiss, M., Steiner, D. F. & Philipson, L. H. Insulin biosynthesis, secretion, structure, and structure-activity relationships (Endotext [Internet]. MDText.com, Inc., 2014).
Komatsu, M., Takei, M., Ishii, H. & Sato, Y. Glucose-stimulated insulin secretion: a newer perspective. J. Diabetes Investig. 4, 511–516 (2013).
pubmed: 24843702
pmcid: 4020243
doi: 10.1111/jdi.12094
Gaisano, H. Y. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes. Metab. 19, 115–123 (2017).
pubmed: 28880475
doi: 10.1111/dom.13001
Byrne, M. M. et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J. Clin. Invest. 93, 1120–1130 (1994).
pubmed: 8132752
pmcid: 294056
doi: 10.1172/JCI117064
Cherrington, A. D., Sindelar, D., Edgerton, D., Steiner, K. & McGuinness, O. P. Physiological consequences of phasic insulin release in the normal animal. Diabetes 51, S103–S108 (2002).
pubmed: 11815467
doi: 10.2337/diabetes.51.2007.S103
Smukler, S. R., Tang, L., Wheeler, M. B. & Salapatek, A. M. Exogenous nitric oxide and endogenous glucose-stimulated β-cell nitric oxide augment insulin release. Diabetes 51, 3450–3460 (2002).
pubmed: 12453899
doi: 10.2337/diabetes.51.12.3450
Rizzo, M. A. & Piston, D. W. Regulation of β cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J. Cell Biol. 161, 243–248 (2003).
pubmed: 12707306
pmcid: 2172922
doi: 10.1083/jcb.200301063
Gonzalez, D. R., Beigi, F., Treuer, A. V. & Hare, J. M. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc. Natl Acad. Sci. USA 104, 20612–20617 (2007).
pubmed: 18077344
pmcid: 2154479
doi: 10.1073/pnas.0706796104
Kawano, T. et al. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol. Pain. 5, 12 (2009).
pubmed: 19284878
pmcid: 2673211
doi: 10.1186/1744-8069-5-12
Palmer, Z. J. et al. S-nitrosylation of syntaxin 1 at Cys(145) is a regulatory switch controlling Munc18-1 binding. Biochem. J. 413, 479–491 (2008).
pubmed: 18452404
doi: 10.1042/BJ20080069
Wiseman, D. A., Kalwat, M. A. & Thurmond, D. C. Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis. J. Biol. Chem. 286, 16344–16354 (2011).
pubmed: 21393240
pmcid: 3091240
doi: 10.1074/jbc.M110.214031
Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150 (2003).
pubmed: 14567912
pmcid: 2846406
doi: 10.1016/S0092-8674(03)00803-1
Ferre, T., Riu, E., Bosch, F. & Valera, A. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J. 10, 1213–1218 (1996).
pubmed: 8751724
doi: 10.1096/fasebj.10.10.8751724
Tarasov, A., Dusonchet, J. & Ashcroft, F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53, S113–S122 (2004).
pubmed: 15561898
doi: 10.2337/diabetes.53.suppl_3.S113
Roder, P. V., Wu, B., Liu, Y. & Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48, e219 (2016).
pubmed: 26964835
pmcid: 4892884
doi: 10.1038/emm.2016.6
Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).
pubmed: 9867845
doi: 10.1074/jbc.274.1.305
Matschinsky, F. M. Regulation of pancreatic β-cell glucokinase: from basics to therapeutics. Diabetes 51, S394–S404 (2002).
pubmed: 12475782
doi: 10.2337/diabetes.51.2007.S394
Rizzo, M. A., Magnuson, M. A., Drain, P. F. & Piston, D. W. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. J. Biol. Chem. 277, 34168–34175 (2002).
pubmed: 12101177
doi: 10.1074/jbc.M112478200
Stubbs, M., Aiston, S. & Agius, L. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells. Diabetes 49, 2048–2055 (2000).
pubmed: 11118006
doi: 10.2337/diabetes.49.12.2048
Ding, S. Y. et al. Naturally occurring glucokinase mutations are associated with defects in posttranslational S-nitrosylation. Mol. Endocrinol. 24, 171–177 (2010).
pubmed: 19934346
doi: 10.1210/me.2009-0138
Markwardt, M. L., Nkobena, A., Ding, S. Y. & Rizzo, M. A. Association with nitric oxide synthase on insulin secretory granules regulates glucokinase protein levels. Mol. Endocrinol. 26, 1617–1629 (2012).
pubmed: 22771492
pmcid: 3434526
doi: 10.1210/me.2012-1183
Miller, S. P. et al. Characterization of glucokinase mutations associated with maturity-onset diabetes of the young type 2 (MODY-2): different glucokinase defects lead to a common phenotype. Diabetes 48, 1645–1651 (1999).
pubmed: 10426385
doi: 10.2337/diabetes.48.8.1645
Holst, J. J. & Gromada, J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 287, E199–E206 (2004).
pubmed: 15271645
doi: 10.1152/ajpendo.00545.2003
Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).
pubmed: 31767182
pmcid: 6812410
doi: 10.1016/j.molmet.2019.09.010
Ding, S. Y., Nkobena, A., Kraft, C. A., Markwardt, M. L. & Rizzo, M. A. Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic β cells. J. Biol. Chem. 286, 16768–16774 (2011).
pubmed: 21454584
pmcid: 3089519
doi: 10.1074/jbc.M110.192799
Bjorkhaug, L., Molnes, J., Sovik, O., Njolstad, P. R. & Flatmark, T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin-dependent cotranslational proteasomal degradation. J. Biol. Chem. 282, 22757–22764 (2007).
pubmed: 17561510
doi: 10.1074/jbc.M700517200
Tiedge, M., Richter, T. & Lenzen, S. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch. Biochem. Biophys. 375, 251–260 (2000).
pubmed: 10700381
doi: 10.1006/abbi.1999.1666
Graves, T. K. & Hinkle, P. M. Ca(2+)-induced Ca(2+) release in the pancreatic β-cell: direct evidence of endoplasmic reticulum Ca(2+) release. Endocrinology 144, 3565–3574 (2003).
pubmed: 12865339
doi: 10.1210/en.2002-0104
Johnson, J. D., Kuang, S., Misler, S. & Polonsky, K. S. Ryanodine receptors in human pancreatic β cells: localization and effects on insulin secretion. FASEB J. 18, 878–880 (2004).
pubmed: 15033925
doi: 10.1096/fj.03-1280fje
Dixit, S. S. et al. Effects of CaMKII-mediated phosphorylation of ryanodine receptor type 2 on islet calcium handling, insulin secretion, and glucose tolerance. PLoS ONE 8, e58655 (2013).
pubmed: 23516528
pmcid: 3596297
doi: 10.1371/journal.pone.0058655
Santulli, G. et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J. Clin. Invest. 125, 4316 (2015).
pubmed: 26524594
pmcid: 4639985
doi: 10.1172/JCI84937
Llanos, P. et al. Glucose-dependent insulin secretion in pancreatic β-cell islets from male rats requires Ca2+ release via ROS-stimulated ryanodine receptors. PLoS ONE 10, e0129238 (2015).
pubmed: 26046640
pmcid: 4457734
doi: 10.1371/journal.pone.0129238
Sun, J. et al. Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Biochemistry 47, 13985–13990 (2008).
pubmed: 19053230
doi: 10.1021/bi8012627
Pipatpolkai, T., Usher, S., Stansfeld, P. J. & Ashcroft, F. M. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Nat. Rev. Endocrinol. 16, 378–393 (2020).
pubmed: 32376986
doi: 10.1038/s41574-020-0351-y
Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101–110.e10 (2017).
pubmed: 28086082
doi: 10.1016/j.cell.2016.12.028
Aittoniemi, J. et al. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 257–267 (2009).
pubmed: 18990670
doi: 10.1098/rstb.2008.0142
Aquilante, C. L. Sulfonylurea pharmacogenomics in type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev. Cardiovasc. Ther. 8, 359–372 (2010).
pubmed: 20222815
pmcid: 2860269
doi: 10.1586/erc.09.154
Nichols, C. G. KATP channels as molecular sensors of cellular metabolism. Nature 440, 470–476 (2006).
pubmed: 16554807
doi: 10.1038/nature04711
Jewell, J. L., Oh, E. & Thurmond, D. C. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R517–R531 (2010).
pubmed: 20053958
pmcid: 2838661
doi: 10.1152/ajpregu.00597.2009
Hou, J. C., Min, L. & Pessin, J. E. Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm. 80, 473–506 (2009).
pubmed: 19251047
pmcid: 4324607
doi: 10.1016/S0083-6729(08)00616-X
Kasai, H., Takahashi, N. & Tokumaru, H. Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol. Rev. 92, 1915–1964 (2012).
pubmed: 23073634
doi: 10.1152/physrev.00007.2012
Yang, B., Steegmaier, M., Gonzalez, L. C. Jr & Scheller, R. H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247–252 (2000).
pubmed: 10648557
pmcid: 2174276
doi: 10.1083/jcb.148.2.247
Hardy, O. T., Czech, M. P. & Corvera, S. What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes Obes. 19, 81–87 (2012).
pubmed: 22327367
pmcid: 4038351
doi: 10.1097/MED.0b013e3283514e13
Henningsson, R., Salehi, A. & Lundquist, I. Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am. J. Physiol. Cell Physiol. 283, C296–C304 (2002).
pubmed: 12055099
doi: 10.1152/ajpcell.00537.2001
Muhammed, S. J., Lundquist, I. & Salehi, A. Pancreatic β-cell dysfunction, expression of iNOS and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes Obes. Metab. 14, 1010–1019 (2012).
pubmed: 22687049
doi: 10.1111/j.1463-1326.2012.01632.x
Zhao, C., Smith, E. C. & Whiteheart, S. W. Requirements for the catalytic cycle of the N-ethylmaleimide-sensitive factor (NSF). Biochim. Biophys. Acta 1823, 159–171 (2012).
pubmed: 21689688
doi: 10.1016/j.bbamcr.2011.06.003
Morrell, C. N. et al. Regulation of platelet granule exocytosis by S-nitrosylation. Proc. Natl Acad. Sci. USA 102, 3782–3787 (2005).
pubmed: 15738422
pmcid: 553307
doi: 10.1073/pnas.0408310102
Ito, T., Yamakuchi, M. & Lowenstein, C. J. Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor. J. Biol. Chem. 286, 11179–11184 (2011).
pubmed: 21324905
pmcid: 3064172
doi: 10.1074/jbc.M110.201780
Yazdani, S., Jaldin-Fincati, J. R., Pereira, R. V. S. & Klip, A. Endothelial cell barriers: transport of molecules between blood and tissues. Traffic 20, 390–403 (2019).
pubmed: 30950163
doi: 10.1111/tra.12645
Barrett, E. J., Wang, H., Upchurch, C. T. & Liu, Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am. J. Physiol. Endocrinol. Metab. 301, E252–E263 (2011).
pubmed: 21610226
pmcid: 3154531
doi: 10.1152/ajpendo.00186.2011
Wang, H., Wang, A. X., Aylor, K. & Barrett, E. J. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes 62, 4030–4042 (2013).
pubmed: 23863813
pmcid: 3837040
doi: 10.2337/db13-0627
Wang, H., Wang, A. X., Liu, Z. & Barrett, E. J. Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes 57, 540–547 (2008).
pubmed: 17977956
doi: 10.2337/db07-0967
Wang, H., Wang, A. X. & Barrett, E. J. Caveolin-1 is required for vascular endothelial insulin uptake. Am. J. Physiol. Endocrinol. Metab. 300, E134–E144 (2011).
pubmed: 20959538
doi: 10.1152/ajpendo.00498.2010
Haddad, D., Al Madhoun, A., Nizam, R. & Al-Mulla, F. Role of caveolin-1 in diabetes and its complications. Oxid. Med. Cell Longev. 2020, 9761539 (2020).
pubmed: 32082483
pmcid: 7007939
doi: 10.1155/2020/9761539
Cohen, A. W. et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 285, C222–C235 (2003).
pubmed: 12660144
doi: 10.1152/ajpcell.00006.2003
Chen, Z. et al. Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol. Biol. Cell 29, 1190–1202 (2018).
pubmed: 29563255
pmcid: 5935069
doi: 10.1091/mbc.E17-01-0049
Song, H. et al. Release of matrix metalloproteinases-2 and 9 by S-nitrosylated caveolin-1 contributes to degradation of extracellular matrix in tPA-treated hypoxic endothelial cells. PLoS ONE 11, e0149269 (2016).
pubmed: 26881424
pmcid: 4755609
doi: 10.1371/journal.pone.0149269
Bakhshi, F. R. et al. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm. Circ. 3, 816–830 (2013).
pubmed: 25006397
pmcid: 4070841
doi: 10.1086/674753
Tang, W. J. Targeting insulin-degrading enzyme to treat type 2 diabetes mellitus. Trends Endocrinol. Metab. 27, 24–34 (2016).
pubmed: 26651592
doi: 10.1016/j.tem.2015.11.003
Pivovarova, O., Hohn, A., Grune, T., Pfeiffer, A. F. & Rudovich, N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer’s disease? Ann. Med. 48, 614–624 (2016).
pubmed: 27320287
doi: 10.1080/07853890.2016.1197416
Farris, W. et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA 100, 4162–4167 (2003).
pubmed: 12634421
pmcid: 153065
doi: 10.1073/pnas.0230450100
Wroblewski, V. J., Masnyk, M., Khambatta, S. S. & Becker, G. W. Mechanisms involved in degradation of human insulin by cytosolic fractions of human, monkey, and rat liver. Diabetes 41, 539–547 (1992).
pubmed: 1607078
doi: 10.2337/diab.41.4.539
Fakhrai-Rad, H. et al. Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. Hum. Mol. Genet. 9, 2149–2158 (2000).
pubmed: 10958757
doi: 10.1093/hmg/9.14.2149
Ralat, L. A., Ren, M., Schilling, A. B. & Tang, W. J. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. J. Biol. Chem. 284, 34005–34018 (2009).
pubmed: 19808678
pmcid: 2797171
doi: 10.1074/jbc.M109.030627
Cordes, C. M., Bennett, R. G., Siford, G. L. & Hamel, F. G. Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation. Biochem. Pharmacol. 77, 1064–1073 (2009).
pubmed: 19154729
doi: 10.1016/j.bcp.2008.12.006
Akhtar, M. W. et al. Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat. Commun. 7, 10242 (2016).
pubmed: 26743041
pmcid: 4729876
doi: 10.1038/ncomms10242
Ward, C. W. & Lawrence, M. C. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Bioessays 31, 422–434 (2009).
pubmed: 19274663
doi: 10.1002/bies.200800210
Kadowaki, T., Ueki, K., Yamauchi, T. & Kubota, N. SnapShot: insulin signaling pathways. Cell 148, 624.e1 (2012).
Kadowaki, T., Kubota, N., Ueki, K. & Yamauchi, T. SnapShot: physiology of insulin signaling. Cell 148, 834–834.e1 (2012).
pubmed: 22341452
doi: 10.1016/j.cell.2012.02.004
Duplain, H. et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104, 342–345 (2001).
pubmed: 11457755
doi: 10.1161/01.CIR.104.3.342
Vecoli, C. et al. Partial deletion of eNOS gene causes hyperinsulinemic state, unbalance of cardiac insulin signaling pathways and coronary dysfunction independently of high fat diet. PLoS One 9, e104156 (2014).
pubmed: 25093405
pmcid: 4122412
doi: 10.1371/journal.pone.0104156
Nakagawa, T. et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18, 539–550 (2007).
pubmed: 17202420
doi: 10.1681/ASN.2006050459
Kashyap, S. R. et al. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J. Clin. Endocrinol. Metab. 90, 1100–1105 (2005).
pubmed: 15562034
doi: 10.1210/jc.2004-0745
Hsu, M. F. & Meng, T. C. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J. Biol. Chem. 285, 7919–7928 (2010).
pubmed: 20064934
pmcid: 2832942
doi: 10.1074/jbc.M109.057513
Barrett, D. M. et al. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J. Biol. Chem. 280, 14453–14461 (2005).
pubmed: 15684422
doi: 10.1074/jbc.M411523200
Numajiri, N. et al. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc. Natl Acad. Sci. USA 108, 10349–10354 (2011).
pubmed: 21646525
pmcid: 3121815
doi: 10.1073/pnas.1103503108
Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).
pubmed: 10066179
doi: 10.1126/science.283.5407.1544
Chen, Y. Y. et al. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem. 283, 35265–35272 (2008).
pubmed: 18840608
pmcid: 3259880
doi: 10.1074/jbc.M805287200
Chen, C. Y., Chen, J., He, L. & Stiles, B. L. PTEN: tumor suppressor and metabolic regulator. Front. Endocrinol. 9, 338 (2018).
doi: 10.3389/fendo.2018.00338
Kurlawalla-Martinez, C. et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell Biol. 25, 2498–2510 (2005).
pubmed: 15743841
pmcid: 1061603
doi: 10.1128/MCB.25.6.2498-2510.2005
Pei, D. S., Sun, Y. F. & Song, Y. J. S-nitrosylation of PTEN invovled in ischemic brain injury in rat hippocampal CA1 region. Neurochem. Res. 34, 1507–1512 (2009).
pubmed: 19266280
doi: 10.1007/s11064-009-9938-3
Zhu, L. et al. NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells. Cell Death Discov. 3, 17011 (2017).
pubmed: 28243469
pmcid: 5317009
doi: 10.1038/cddiscovery.2017.11
Kwak, Y. D. et al. NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol. Neurodegener. 5, 49 (2010).
pubmed: 21067594
pmcid: 2992530
doi: 10.1186/1750-1326-5-49
Choi, M. S. et al. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson’s disease models. J. Neurosci. 34, 15123–15131 (2014).
pubmed: 25378175
pmcid: 4220036
doi: 10.1523/JNEUROSCI.4751-13.2014
Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).
pubmed: 12446870
doi: 10.1126/science.1077209
Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).
pubmed: 11343120
doi: 10.1038/35051094
Montagnani, M., Chen, H., Barr, V. A. & Quon, M. J. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J. Biol. Chem. 276, 30392–30398 (2001).
pubmed: 11402048
doi: 10.1074/jbc.M103702200
Muoio, D. M. & Newgard, C. B. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).
pubmed: 18200017
doi: 10.1038/nrm2327
Cerf, M. E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 4, 37 (2013).
doi: 10.3389/fendo.2013.00037
Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).
pubmed: 26553134
doi: 10.1038/nrendo.2015.189
Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).
pubmed: 17167471
doi: 10.1038/nature05482
Kim, J. H., Bachmann, R. A. & Chen, J. Interleukin-6 and insulin resistance. Vitam. Horm. 80, 613–633 (2009).
pubmed: 19251052
doi: 10.1016/S0083-6729(08)00621-3
Salvado, L., Palomer, X., Barroso, E. & Vazquez-Carrera, M. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol. Metab. 26, 438–448 (2015).
pubmed: 26078196
doi: 10.1016/j.tem.2015.05.007
Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191 (2014).
pubmed: 24384568
pmcid: 3941218
doi: 10.1101/cshperspect.a009191
Copps, K. D. & White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565–2582 (2012).
pubmed: 22869320
pmcid: 4011499
doi: 10.1007/s00125-012-2644-8
Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).
pubmed: 30971818
pmcid: 6635957
doi: 10.1038/s41586-019-1100-z
Yang, L. et al. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 349, 500–506 (2015).
pubmed: 26228140
pmcid: 4573582
doi: 10.1126/science.aaa0079
Katashima, C. K., Silva, V. R. R., Lenhare, L., Marin, R. M. & Carvalheira, J. B. C. iNOS promotes hypothalamic insulin resistance associated with deregulation of energy balance and obesity in rodents. Sci. Rep. 7, 9265 (2017).
pubmed: 28835706
pmcid: 5569114
doi: 10.1038/s41598-017-08920-z
Shinozaki, S. et al. Liver-specific inducible nitric-oxide synthase expression is sufficient to cause hepatic insulin resistance and mild hyperglycemia in mice. J. Biol. Chem. 286, 34959–34975 (2011).
pubmed: 21846719
pmcid: 3186386
doi: 10.1074/jbc.M110.187666
Carvalho-Filho, M. A. et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes 54, 959–967 (2005).
pubmed: 15793233
doi: 10.2337/diabetes.54.4.959
Kaneki, M., Shimizu, N., Yamada, D. & Chang, K. Nitrosative stress and pathogenesis of insulin resistance. Antioxid. Redox Signal. 9, 319–329 (2007).
pubmed: 17184170
doi: 10.1089/ars.2006.1464
Yasukawa, T. et al. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J. Biol. Chem. 280, 7511–7518 (2005).
pubmed: 15632167
doi: 10.1074/jbc.M411871200
Carvalho-Filho, M. A., Ueno, M., Carvalheira, J. B., Velloso, L. A. & Saad, M. J. Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRβ/IRS-1 and Akt and insulin resistance in muscle of mice. Am. J. Physiol. Endocrinol. Metab. 291, E476–E482 (2006).
pubmed: 16638822
doi: 10.1152/ajpendo.00422.2005
Ropelle, E. R. et al. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes 62, 466–470 (2013).
pubmed: 22991447
pmcid: 3554348
doi: 10.2337/db12-0339
Crunfli, F. et al. NO-dependent Akt Inactivation by S-nitrosylation as a possible mechanism of STZ-induced neuronal insulin resistance. J. Alzheimers Dis. 65, 1427–1443 (2018).
pubmed: 30149447
doi: 10.3233/JAD-180284
Wu, M. et al. Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention. PLoS ONE 4, e6430 (2009).
pubmed: 19641606
pmcid: 2712760
doi: 10.1371/journal.pone.0006430
Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).
pubmed: 24906151
pmcid: 4114226
doi: 10.1016/j.cell.2014.05.012
Carvalho-Filho, M. A. et al. Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRβ/IRS-1 and Akt. Diabetologia 52, 2425–2434 (2009).
pubmed: 19730809
doi: 10.1007/s00125-009-1498-1
Tsuzuki, T. et al. Voluntary exercise can ameliorate insulin resistance by reducing iNOS-mediated S-nitrosylation of Akt in the liver in obese rats. PLoS ONE 10, e0132029 (2015).
pubmed: 26172834
pmcid: 4501761
doi: 10.1371/journal.pone.0132029
Pauli, J. R. et al. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J. Physiol. 586, 659–671 (2008).
pubmed: 17974582
doi: 10.1113/jphysiol.2007.142414
Muniyappa, R. & Sowers, J. R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 14, 5–12 (2013).
pubmed: 23306778
pmcid: 3594115
doi: 10.1007/s11154-012-9229-1
Potenza, M. A. et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am. J. Physiol. Heart Circ. Physiol. 289, H813–H822 (2005).
pubmed: 15792994
doi: 10.1152/ajpheart.00092.2005
Montagnani, M. et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J. Biol. Chem. 277, 1794–1799 (2002).
pubmed: 11707433
doi: 10.1074/jbc.M103728200
Mukai, Y., Wang, C. Y., Rikitake, Y. & Liao, J. K. Phosphatidylinositol 3-kinase/protein kinase Akt negatively regulates plasminogen activator inhibitor type 1 expression in vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 292, H1937–H1942 (2007).
pubmed: 17172275
doi: 10.1152/ajpheart.00868.2006
Patel, P. & Woodgett, J. R. Glycogen synthase kinase 3: a kinase for all pathways? Curr. Top. Dev. Biol. 123, 277–302 (2017).
pubmed: 28236969
doi: 10.1016/bs.ctdb.2016.11.011
Dibble, C. C. & Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545–555 (2015).
pubmed: 26159692
pmcid: 4734635
doi: 10.1016/j.tcb.2015.06.002
Wang, S. B. et al. Protein S-nitrosylation controls glycogen synthase kinase 3β function independent of its phosphorylation state. Circ. Res. 122, 1517–1531 (2018).
pubmed: 29563102
pmcid: 6047766
doi: 10.1161/CIRCRESAHA.118.312789
Lopez-Rivera, E. et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res. 74, 1067–1078 (2014).
pubmed: 24398473
pmcid: 3960077
doi: 10.1158/0008-5472.CAN-13-0588
Lee, S. & Dong, H. H. FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 233, R67–R79 (2017).
pubmed: 28213398
pmcid: 5480241
doi: 10.1530/JOE-17-0002
DiPilato, L. M. et al. The role of PDE3B phosphorylation in the inhibition of lipolysis by insulin. Mol. Cell Biol. 35, 2752–2760 (2015).
pubmed: 26031333
pmcid: 4508315
doi: 10.1128/MCB.00422-15
Scherer, P. E. The multifaceted roles of adipose tissue–therapeutic targets for diabetes and beyond: the 2015 Banting Lecture. Diabetes 65, 1452–1461 (2016).
pubmed: 27222389
pmcid: 4878420
doi: 10.2337/db16-0339
Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARɣ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).
pubmed: 8001151
doi: 10.1016/0092-8674(94)90006-X
Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARɣ. Annu. Rev. Biochem. 77, 289–312 (2008).
pubmed: 18518822
doi: 10.1146/annurev.biochem.77.061307.091829
Yin, R. et al. Pro-inflammatory macrophages suppress PPARɣ activity in adipocytes via S-nitrosylation. Free Radic. Biol. Med. 89, 895–905 (2015).
pubmed: 26475041
doi: 10.1016/j.freeradbiomed.2015.10.406
Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).
pubmed: 18401346
pmcid: 2886982
doi: 10.1038/nrm2391
Ovadia, H. et al. Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J. Biol. Chem. 286, 30433–30443 (2011).
pubmed: 21724851
pmcid: 3162403
doi: 10.1074/jbc.M111.235945
Choi, Y. H. et al. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J. Clin. Invest. 116, 3240–3251 (2006).
pubmed: 17143332
pmcid: 1678809
doi: 10.1172/JCI24867
Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).
pubmed: 15152190
pmcid: 423286
doi: 10.1038/sj.emboj.7600244
Gauglitz, G. G. et al. Post-burn hepatic insulin resistance is associated with endoplasmic reticulum (ER) stress. Shock 33, 299–305 (2010).
pubmed: 22011639
doi: 10.1097/SHK.0b013e3181b2f439
Nakazawa, H. et al. iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: possible involvement of Sirt1 S-nitrosylation-mediated acetylation of p65 NF-κB and p53. PLoS ONE 12, e0170391 (2017).
pubmed: 28099528
pmcid: 5242494
doi: 10.1371/journal.pone.0170391
Shinozaki, S. et al. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci. Signal. 7, ra106 (2014).
pubmed: 25389371
pmcid: 4340581
doi: 10.1126/scisignal.2005375
Gillum, M. P. et al. SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011).
pubmed: 22110092
pmcid: 3219953
doi: 10.2337/db11-0616
Wang, R. H. et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 121, 4477–4490 (2011).
pubmed: 21965330
pmcid: 3204833
doi: 10.1172/JCI46243
Poitout, V. et al. Glucolipotoxicity of the pancreatic beta cell. Biochim. Biophys. Acta 1801, 289–298 (2010).
pubmed: 19715772
doi: 10.1016/j.bbalip.2009.08.006
Ye, R., Onodera, T. & Scherer, P. E. Lipotoxicity and β cell maintenance in obesity and type 2 diabetes. J. Endocr. Soc. 3, 617–631 (2019).
pubmed: 30834357
pmcid: 6391718
doi: 10.1210/js.2018-00372
Heimann, E. et al. Expression and regulation of cyclic nucleotide phosphodiesterases in human and rat pancreatic islets. PLoS ONE 5, e14191 (2010).
pubmed: 21152070
pmcid: 2995729
doi: 10.1371/journal.pone.0014191
Dubois, M. et al. Expression of peroxisome proliferator-activated receptor ɣ (PPARɣ) in normal human pancreatic islet cells. Diabetologia 43, 1165–1169 (2000).
pubmed: 11043863
doi: 10.1007/s001250051508
Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol. 4, e31 (2006).
pubmed: 16366736
doi: 10.1371/journal.pbio.0040031
Lin, J. H., Walter, P. & Yen, T. S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008).
pubmed: 18039139
pmcid: 3653419
doi: 10.1146/annurev.pathmechdis.3.121806.151434
Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
pubmed: 22116877
doi: 10.1126/science.1209038
Higuchi-Sanabria, R., Frankino, P. A., Paul, J. W. 3rd, Tronnes, S. U. & Dillin, A. A futile battle? Protein quality control and the stress of aging. Dev. Cell 44, 139–163 (2018).
pubmed: 29401418
pmcid: 5896312
doi: 10.1016/j.devcel.2017.12.020
Volpi, V. G., Touvier, T. & D’Antonio, M. Endoplasmic reticulum protein quality control failure in myelin disorders. Front. Mol. Neurosci. 9, 162 (2016).
pubmed: 28101003
Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).
pubmed: 22251901
doi: 10.1038/nrm3270
Anholt, R. R. & Carbone, M. A. A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol. Med. 19, 586–593 (2013).
pubmed: 23876925
pmcid: 3795998
doi: 10.1016/j.molmed.2013.06.005
Ghosh, R., Colon-Negron, K. & Papa, F. R. Endoplasmic reticulum stress, degeneration of pancreatic islet β-cells, and therapeutic modulation of the unfolded protein response in diabetes. Mol. Metab. 27S, S60–S68 (2019).
pubmed: 31500832
doi: 10.1016/j.molmet.2019.06.012
Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).
pubmed: 18650916
pmcid: 2727659
doi: 10.1038/nature07203
Matus, S., Glimcher, L. H. & Hetz, C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr. Opin. Cell Biol. 23, 239–252 (2011).
pubmed: 21288706
doi: 10.1016/j.ceb.2011.01.003
Ren, J., Bi, Y., Sowers, J. R., Hetz, C. & Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 18, 499–521 (2021).
pubmed: 33619348
doi: 10.1038/s41569-021-00511-w
Nakato, R. et al. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci. Rep. 5, 14812 (2015).
pubmed: 26446798
pmcid: 4597200
doi: 10.1038/srep14812
Fonseca, S. G., Burcin, M., Gromada, J. & Urano, F. Endoplasmic reticulum stress in β-cells and development of diabetes. Curr. Opin. Pharmacol. 9, 763–770 (2009).
pubmed: 19665428
pmcid: 2787771
doi: 10.1016/j.coph.2009.07.003
Huang, C. J. et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56, 2016–2027 (2007).
pubmed: 17475933
doi: 10.2337/db07-0197
Zhang, L., Lai, E., Teodoro, T. & Volchuk, A. GRP78, but not protein-disulfide isomerase, partially reverses hyperglycemia-induced inhibition of insulin synthesis and secretion in pancreatic β-cells. J. Biol. Chem. 284, 5289–5298 (2009).
pubmed: 19103594
doi: 10.1074/jbc.M805477200
Jang, I. et al. PDIA1/P4HB is required for efficient proinsulin maturation and β cell health in response to diet induced obesity. eLife 8, e44528 (2019).
pubmed: 31184304
pmcid: 6559792
doi: 10.7554/eLife.44528
Wilkinson, B. & Gilbert, H. F. Protein disulfide isomerase. Biochim. Biophys. Acta 1699, 35–44 (2004).
pubmed: 15158710
doi: 10.1016/S1570-9639(04)00063-9
Wadham, C., Parker, A., Wang, L. & Xia, P. High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress. Diabetes 56, 2715–2721 (2007).
pubmed: 17704302
doi: 10.2337/db06-1294
Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).
pubmed: 16724068
doi: 10.1038/nature04782
Hu, Y. et al. Endoplasmic reticulum-associated degradation (ERAD) has a critical role in supporting glucose-stimulated insulin secretion in pancreatic β-cells. Diabetes 68, 733–746 (2019).
pubmed: 30626610
doi: 10.2337/db18-0624
Lopata, A., Kniss, A., Lohr, F., Rogov, V. V. & Dotsch, V. Ubiquitination in the ERAD process. Int. J. Mol. Sci. 21, 5369 (2020).
pmcid: 7432864
doi: 10.3390/ijms21155369
Azzam, S. K. et al. Genetic associations with diabetic retinopathy and coronary artery disease in Emirati patients with type-2 diabetes mellitus. Front. Endocrinol. 10, 283 (2019).
doi: 10.3389/fendo.2019.00283
Fujikawa, K. et al. S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein. Biochem. Biophys. Res. Commun. 524, 910–915 (2020).
pubmed: 32051088
doi: 10.1016/j.bbrc.2020.02.011
Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).
pubmed: 23656658
doi: 10.1056/NEJMra1205406
Watada, H. & Fujitani, Y. Minireview: Autophagy in pancreatic β-cells and its implication in diabetes. Mol. Endocrinol. 29, 338–348 (2015).
pubmed: 25633274
pmcid: 5414755
doi: 10.1210/me.2014-1367
Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).
pubmed: 20519119
pmcid: 2881480
doi: 10.1016/j.cmet.2010.04.005
Arai, C. et al. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. J. Nutr. Sci. Vitaminol. 59, 393–401 (2013).
pubmed: 24418873
doi: 10.3177/jnsv.59.393
Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).
pubmed: 19339967
pmcid: 2676208
doi: 10.1038/nature07976
Qian, Q. et al. S-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagy. Diabetes 67, 193–207 (2018).
pubmed: 29074597
doi: 10.2337/db17-0223
Liu, L. et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617–628 (2004).
pubmed: 14980227
doi: 10.1016/S0092-8674(04)00131-X
Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).
pubmed: 20965422
pmcid: 3127250
doi: 10.1016/j.molcel.2010.09.023
Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325–332 (2008).
pubmed: 18840363
doi: 10.1016/j.cmet.2008.08.009
Masini, M. et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52, 1083–1086 (2009).
pubmed: 19367387
doi: 10.1007/s00125-009-1347-2
Wright, C., Iyer, A. K., Kulkarni, Y. & Azad, N. S-Nitrosylation of Bcl-2 negatively affects autophagy in lung epithelial cells. J. Cell Biochem. 117, 521–532 (2016).
pubmed: 26241894
pmcid: 4715592
doi: 10.1002/jcb.25303
Montagna, C. et al. To eat, or NOt to eat: S-nitrosylation signaling in autophagy. FEBS J. 283, 3857–3869 (2016).
pubmed: 27083138
doi: 10.1111/febs.13736
Luchsinger, J. A., Tang, M. X., Shea, S. & Mayeux, R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 63, 1187–1192 (2004).
pubmed: 15477536
doi: 10.1212/01.WNL.0000140292.04932.87
Sergi, D., Renaud, J., Simola, N. & Martinoli, M. G. Diabetes, a contemporary risk for Parkinson’s disease: epidemiological and cellular evidences. Front. Aging Neurosci. 11, 302 (2019).
pubmed: 31787891
pmcid: 6856011
doi: 10.3389/fnagi.2019.00302
Lee, S., Tong, M., Hang, S., Deochand, C. & de la Monte, S. CSF and brain indices of insulin resistance, oxidative stress and neuro-inflammation in early versus late Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism 3, 128 (2013).
pubmed: 25035815
pmcid: 4096626
de la Monte, S. M. & Wands, J. R. Alzheimer’s disease is type 3 diabetes–evidence reviewed. J. Diabetes Sci. Technol. 2, 1101–1113 (2008).
pubmed: 19885299
pmcid: 2769828
doi: 10.1177/193229680800200619