Distinct conformations of the HIV-1 V3 loop crown are targetable for broad neutralization.
Antibodies, Neutralizing
/ immunology
Cell Line, Tumor
Epitopes
/ genetics
HEK293 Cells
HIV Antibodies
/ immunology
HIV-1
/ genetics
Humans
Immunoglobulin G
/ immunology
Molecular Docking Simulation
Molecular Dynamics Simulation
Mutation
Protein Binding
Protein Conformation
env Gene Products, Human Immunodeficiency Virus
/ chemistry
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
18 11 2021
18 11 2021
Historique:
received:
25
01
2021
accepted:
03
11
2021
entrez:
19
11
2021
pubmed:
20
11
2021
medline:
28
12
2021
Statut:
epublish
Résumé
The V3 loop of the HIV-1 envelope (Env) protein elicits a vigorous, but largely non-neutralizing antibody response directed to the V3-crown, whereas rare broadly neutralizing antibodies (bnAbs) target the V3-base. Challenging this view, we present V3-crown directed broadly neutralizing Designed Ankyrin Repeat Proteins (bnDs) matching the breadth of V3-base bnAbs. While most bnAbs target prefusion Env, V3-crown bnDs bind open Env conformations triggered by CD4 engagement. BnDs achieve breadth by focusing on highly conserved residues that are accessible in two distinct V3 conformations, one of which resembles CCR5-bound V3. We further show that these V3-crown conformations can, in principle, be attacked by antibodies. Supporting this conclusion, analysis of antibody binding activity in the Swiss 4.5 K HIV-1 cohort (n = 4,281) revealed a co-evolution of V3-crown reactivities and neutralization breadth. Our results indicate a role of V3-crown responses and its conformational preferences in bnAb development to be considered in preventive and therapeutic approaches.
Identifiants
pubmed: 34795280
doi: 10.1038/s41467-021-27075-0
pii: 10.1038/s41467-021-27075-0
pmc: PMC8602657
doi:
Substances chimiques
Antibodies, Neutralizing
0
Epitopes
0
HIV Antibodies
0
Immunoglobulin G
0
env Gene Products, Human Immunodeficiency Virus
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6705Informations de copyright
© 2021. The Author(s).
Références
Hartley, O., Klasse, P. J., Sattentau, Q. J. & Moore, J. P. V3: HIV’s switch-hitter. AIDS Res. Hum. retroviruses 21, 171–189 (2005).
pubmed: 15725757
doi: 10.1089/aid.2005.21.171
Shaik, M. M. et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 565, 318–323 (2019).
pubmed: 30542158
doi: 10.1038/s41586-018-0804-9
Wilen, C. B., Tilton, J. C. & Doms, R. W. HIV: cell binding and entry. Cold Spring Harb. Perspect. Med. 2, a006866 (2012).
pubmed: 22908191
pmcid: 3405824
doi: 10.1101/cshperspect.a006866
Huang, C. C. et al. Structure of a V3-containing HIV-1 gp120 core. Science 310, 1025–1028 (2005).
pubmed: 16284180
pmcid: 2408531
doi: 10.1126/science.1118398
Jiang, X. et al. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat. Struct. Mol. Biol. 17, 955–961 (2010).
pubmed: 20622876
doi: 10.1038/nsmb.1861
Bartesaghi, A., Merk, A., Borgnia, M. J., Milne, J. L. & Subramaniam, S. Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat. Struct. Mol. Biol. 20, 1352–1357 (2013).
pubmed: 24154805
pmcid: 3917492
doi: 10.1038/nsmb.2711
Cimbro, R. et al. Tyrosine sulfation in the second variable loop (V2) of HIV-1 gp120 stabilizes V2-V3 interaction and modulates neutralization sensitivity. Proc. Natl Acad. Sci. USA 111, 3152–3157 (2014).
pubmed: 24569807
pmcid: 3939864
doi: 10.1073/pnas.1314718111
Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461 (2014).
pubmed: 25296255
pmcid: 4348022
doi: 10.1038/nature13808
Rusert, P. et al. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. J. Exp. Med. 208, 1419–1433 (2011).
pubmed: 21646396
pmcid: 3135368
doi: 10.1084/jem.20110196
Zolla-Pazner, S. & Cardozo, T. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nature reviews. Immunology 10, 527–535 (2010).
pubmed: 20577269
Ozorowski, G. et al. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 547, 360–363 (2017).
pubmed: 28700571
pmcid: 5538736
doi: 10.1038/nature23010
Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184–187 (1996).
pubmed: 8906796
doi: 10.1038/384184a0
Kadelka, C. et al. Distinct, IgG1-driven antibody response landscapes demarcate individuals with broadly HIV-1 neutralizing activity. J. Exp. Med. 215, 1589–1608 (2018).
pubmed: 29794117
pmcid: 5987927
doi: 10.1084/jem.20180246
Moore, P. L., Gray, E. S. & Morris, L. Specificity of the autologous neutralizing antibody response. Curr. Opin. HIV AIDS 4, 358–363 (2009).
pubmed: 20048698
pmcid: 3004050
doi: 10.1097/COH.0b013e32832ea7e8
Sok, D. et al. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and Its camouflaging glycans. Immunity 45, 31–45 (2016).
pubmed: 27438765
pmcid: 4990068
doi: 10.1016/j.immuni.2016.06.026
Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011).
pubmed: 21849977
pmcid: 3393110
doi: 10.1038/nature10373
Corti, D. et al. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PloS ONE 5, e8805 (2010).
pubmed: 20098712
pmcid: 2808385
doi: 10.1371/journal.pone.0008805
Gorny, M. K. et al. Cross-clade neutralizing activity of human anti-V3 monoclonal antibodies derived from the cells of individuals infected with non-B clades of human immunodeficiency virus type 1. J. Virol. 80, 6865–6872 (2006).
pubmed: 16809292
pmcid: 1489067
doi: 10.1128/JVI.02202-05
Han, Q. et al. Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nat. Commun. 10, 2898 (2019).
pubmed: 31263112
pmcid: 6602974
doi: 10.1038/s41467-019-10899-2
Hioe, C. E. et al. Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PloS one 5, e10254 (2010).
pubmed: 20421997
pmcid: 2858080
doi: 10.1371/journal.pone.0010254
Almond, D. et al. Structural conservation predominates over sequence variability in the crown of HIV type 1’s V3 loop. AIDS Res. Hum. retroviruses 26, 717–723 (2010).
pubmed: 20560796
pmcid: 2932551
doi: 10.1089/aid.2009.0254
Gorny, M. K. et al. Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. J. Virol. 76, 9035–9045 (2002).
pubmed: 12186887
pmcid: 136433
doi: 10.1128/JVI.76.18.9035-9045.2002
Rosen, O., Sharon, M., Quadt-Akabayov, S. R. & Anglister, J. Molecular switch for alternative conformations of the HIV-1 V3 region: implications for phenotype conversion. Proc. Natl Acad. Sci. USA 103, 13950–13955 (2006).
pubmed: 16966601
pmcid: 1599894
doi: 10.1073/pnas.0606312103
Balasubramanian, P. et al. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine 35, 1464–1473 (2017).
pubmed: 28185743
pmcid: 5343672
doi: 10.1016/j.vaccine.2016.11.107
Hessell, A. J. et al. Induction of neutralizing antibodies in rhesus macaques using V3 mimotope peptides. Vaccine 34, 2713–2721 (2016).
pubmed: 27102818
pmcid: 4874195
doi: 10.1016/j.vaccine.2016.04.027
Plückthun, A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55, 489–511 (2015).
pubmed: 25562645
doi: 10.1146/annurev-pharmtox-010611-134654
Mann, A. et al. Conformation-dependent recognition of HIV gp120 by designed ankyrin repeat proteins provides access to novel HIV entry inhibitors. J. Virol. 87, 5868–5881 (2013).
pubmed: 23487463
pmcid: 3648163
doi: 10.1128/JVI.00152-13
Binz, H. K. et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582 (2004).
pubmed: 15097997
doi: 10.1038/nbt962
Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P. & Plückthun, A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503 (2003).
pubmed: 12948497
doi: 10.1016/S0022-2836(03)00896-9
Boersma, Y. L. & Plückthun, A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 22, 849–857 (2011).
pubmed: 21715155
doi: 10.1016/j.copbio.2011.06.004
Schilling, J., Schöppe, J., Sauer, E. & Plückthun, A. Co-crystallization with conformation-specific designed ankyrin repeat proteins explains the conformational flexibility of BCL-W. J. Mol. Biol. 426, 2346–2362 (2014).
pubmed: 24747052
doi: 10.1016/j.jmb.2014.04.010
Dreier, B. & Plückthun, A. Ribosome display: a technology for selecting and evolving proteins from large libraries. Methods Mol. Biol. 687, 283–306 (2011).
pubmed: 20967617
doi: 10.1007/978-1-60761-944-4_21
Plückthun, A. Ribosome display: a perspective. Methods Mol. Biol. 805, 3–28 (2012).
pubmed: 22094797
doi: 10.1007/978-1-61779-379-0_1
Gorny, M. K. et al. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. J. Virol. 66, 7538–7542 (1992).
pubmed: 1433529
pmcid: 240465
doi: 10.1128/jvi.66.12.7538-7542.1992
Stanfield, R. L., Gorny, M. K., Williams, C., Zolla-Pazner, S. & Wilson, I. A. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Structure 12, 193–204 (2004).
pubmed: 14962380
doi: 10.1016/j.str.2004.01.003
Ivan, B., Sun, Z., Subbaraman, H., Friedrich, N. & Trkola, A. CD4 occupancy triggers sequential pre-fusion conformational states of the HIV-1 envelope trimer with relevance for broadly neutralizing antibody activity. PLoS Biol. 17, e3000114 (2019).
pubmed: 30650070
pmcid: 6351000
doi: 10.1371/journal.pbio.3000114
Bell, C. H. et al. Structure of antibody F425-B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization. J. Mol. Biol. 375, 969–978 (2008).
pubmed: 18068724
doi: 10.1016/j.jmb.2007.11.013
Burke, V. et al. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure 17, 1538–1546 (2009).
pubmed: 19913488
pmcid: 3683248
doi: 10.1016/j.str.2009.09.012
Riedel, T. et al. Synthetic virus-like particles and conformationally constrained peptidomimetics in vaccine design. Chembiochem: a Eur. J. Chem. Biol. 12, 2829–2836 (2011).
doi: 10.1002/cbic.201100586
Stanfield, R. L., Gorny, M. K., Zolla-Pazner, S. & Wilson, I. A. Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J. Virol. 80, 6093–6105 (2006).
pubmed: 16731948
pmcid: 1472588
doi: 10.1128/JVI.00205-06
Zolla-Pazner, S. et al. The cross-clade neutralizing activity of a human monoclonal antibody is determined by the GPGR V3 motif of HIV type 1. AIDS Res. Hum. retroviruses 20, 1254–1258 (2004).
pubmed: 15588347
doi: 10.1089/aid.2004.20.1254
Desormeaux, A. et al. The highly conserved layer-3 component of the HIV-1 gp120 inner domain is critical for CD4-required conformational transitions. J. Virol. 87, 2549–2562 (2013).
pubmed: 23255784
pmcid: 3571356
doi: 10.1128/JVI.03104-12
Julien, J. P. et al. Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, https://doi.org/10.1126/science.1245625 (2013).
Sanders, R. W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013).
pubmed: 24068931
pmcid: 3777863
doi: 10.1371/journal.ppat.1003618
Pan, R. et al. Increased Epitope Complexity Correlated with Antibody Affinity Maturation and a Novel Binding Mode Revealed by Structures of Rabbit Antibodies against the Third Variable Loop (V3) of HIV-1 gp120. Journal of virology 92 (2018).
Qin, Y. et al. Characterization of a large panel of rabbit monoclonal antibodies against HIV-1 gp120 and isolation of novel neutralizing antibodies against the V3 loop. PloS one 10, e0128823 (2015).
pubmed: 26039641
pmcid: 4454676
doi: 10.1371/journal.pone.0128823
Rusert, P. et al. Determinants of HIV-1 broadly neutralizing antibody induction. Nat. Med. 22, 1260–1267 (2016).
pubmed: 27668936
doi: 10.1038/nm.4187
Pinter, A. et al. The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J. Virol. 78, 5205–5215 (2004).
pubmed: 15113902
pmcid: 400352
doi: 10.1128/JVI.78.10.5205-5215.2004
Havenar-Daughton, C., Lee, J. H. & Crotty, S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunological Rev. 275, 49–61 (2017).
doi: 10.1111/imr.12512
Kulp, D. W. et al. Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nat. Commun. 8, 1655 (2017).
pubmed: 29162799
pmcid: 5698488
doi: 10.1038/s41467-017-01549-6
van Schooten, J. & van Gils, M. J. HIV-1 immunogens and strategies to drive antibody responses towards neutralization breadth. Retrovirology 15, 74 (2018).
pubmed: 30477581
pmcid: 6260891
doi: 10.1186/s12977-018-0457-7
Escolano, A. et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature 570, 468–473 (2019).
pubmed: 31142836
pmcid: 6657810
doi: 10.1038/s41586-019-1250-z
Sanders, R. W. & Moore, J. P. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunological Rev. 275, 161–182 (2017).
doi: 10.1111/imr.12481
Torrents de la Pena, A. & Sanders, R. W. Stabilizing HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies. Retrovirology 15, 63 (2018).
pubmed: 30208933
pmcid: 6134781
doi: 10.1186/s12977-018-0445-y
Guttman, M. et al. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nat. Commun. 6, 6144 (2015).
pubmed: 25652336
doi: 10.1038/ncomms7144
Cerutti, N., Loredo-Varela, J. L., Caillat, C. & Weissenhorn, W. Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Curr. Opin. HIV AIDS 12, 250–256 (2017).
pubmed: 28422789
doi: 10.1097/COH.0000000000000364
Ruprecht, C. R. et al. MPER-specific antibodies induce gp120 shedding and irreversibly neutralize HIV-1. J. Exp. Med. 208, 439–454 (2011).
pubmed: 21357743
pmcid: 3058584
doi: 10.1084/jem.20101907
Sok, D. & Burton, D. R. Recent progress in broadly neutralizing antibodies to HIV. Nat. Immunol. 19, 1179–1188 (2018).
pubmed: 30333615
pmcid: 6440471
doi: 10.1038/s41590-018-0235-7
Abela, I. A. et al. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog. 8, e1002634 (2012).
pubmed: 22496655
pmcid: 3320602
doi: 10.1371/journal.ppat.1002634
Reh, L. et al. Capacity of broadly neutralizing antibodies to inhibit HIV-1 cell-cell transmission is strain- and epitope-dependent. PLoS Pathog. 11, e1004966 (2015).
pubmed: 26158270
pmcid: 4497647
doi: 10.1371/journal.ppat.1004966
Corey, L. et al. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N. Engl. J. Med. 384, 1003–1014 (2021).
pubmed: 33730454
pmcid: 8189692
doi: 10.1056/NEJMoa2031738
DARPins stack up as anti-COVID-19 agents. Nature biotechnology 38, 1369 (2020).
Winkler, J., Martin-Killias, P., Plückthun, A. & Zangemeister-Wittke, U. EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol. Cancer Ther. 8, 2674–2683 (2009).
pubmed: 19723880
pmcid: 2948527
doi: 10.1158/1535-7163.MCT-09-0402
O’Keefe, B. R. et al. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc. Natl Acad. Sci. USA 106, 6099–6104 (2009).
pubmed: 19332801
pmcid: 2662964
doi: 10.1073/pnas.0901506106
Harman, S., Herrera, C., Armanasco, N., Nuttall, J. & Shattock, R. J. Preclinical evaluation of the HIV-1 fusion inhibitor L'644 as a potential candidate microbicide. Antimicrobial agents Chemother. 56, 2347–2356 (2012).
doi: 10.1128/AAC.06108-11
clinicaltrials.gov clinical trials identifiers NCT04834856, NCT04828161, NCT04870164, NCT04501978.
clinicaltrials.gov clinical trials identifier NCT04049903.
clinicaltrials.gov clinical trials identifiers NCT03335852, NCT03539549, NCT02859766, NCT02462486, NCT02462928, NCT02181517, NCT02181504, NCT02186119.
Boersma, Y. L., Chao, G., Steiner, D., Wittrup, K. D. & Plückthun, A. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J. Biol. Chem. 286, 41273–41285 (2011).
pubmed: 21979953
pmcid: 3308840
doi: 10.1074/jbc.M111.293266
Dreier, B. et al. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proceedings of the National Academy of Sciences of the United States of America, https://doi.org/10.1073/pnas.1213653110 (2013).
Stefan, N. et al. DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J. Mol. Biol. 413, 826–843 (2011).
pubmed: 21963989
doi: 10.1016/j.jmb.2011.09.016
Zahnd, C., Sarkar, C. A. & Plückthun, A. Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng., Des. selection: PEDS 23, 175–184 (2010).
pubmed: 20130104
doi: 10.1093/protein/gzp087
Zahnd, C. et al. A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369, 1015–1028 (2007).
pubmed: 17466328
doi: 10.1016/j.jmb.2007.03.028
Brandl, F., Busslinger, S., Zangemeister-Wittke, U. & Plückthun, A. Optimizing the anti-tumor efficacy of protein-drug conjugates by engineering the molecular size and half-life. J. Control Release 327, 186–197 (2020).
pubmed: 32768630
doi: 10.1016/j.jconrel.2020.08.004
Brandl, F. et al. Influence of size and charge of unstructured polypeptides on pharmacokinetics and biodistribution of targeted fusion proteins. J. Control Release 307, 379–392 (2019).
pubmed: 31252038
doi: 10.1016/j.jconrel.2019.06.030
Andres, F., Schwill, M., Boersma, Y. L. & Plückthun, A. High-throughput generation of bispecific binding proteins by sortase A-mediated coupling for direct functional screening in cell culture. Mol. Cancer Ther. 19, 1080–1088 (2020).
pubmed: 31871271
doi: 10.1158/1535-7163.MCT-19-0633
Merten, H. et al. Half-life extension of efficiently produced DARPin serum albumin fusions as a function of FcRn affinity and recycling. Eur. J. Pharmaceutics Biopharmaceutics 167, 104–113 (2021).
doi: 10.1016/j.ejpb.2021.07.011
Steiner, D. et al. Half-life extension using serum albumin-binding DARPin (R) domains. Protein Eng. Des. Selection 30, 583–591 (2017).
doi: 10.1093/protein/gzx022
Dreier, B. et al. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc. Natl Acad. Sci. USA 110, E869–E877 (2013).
pubmed: 23431166
pmcid: 3593905
doi: 10.1073/pnas.1213653110
Pancera, M., Changela, A. & Kwong, P. D. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Curr. Opin. HIV AIDS 12, 229–240 (2017).
pubmed: 28422787
pmcid: 5557343
doi: 10.1097/COH.0000000000000360
Munro, J. B. et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346, 759–763 (2014).
pubmed: 25298114
pmcid: 4304640
doi: 10.1126/science.1254426
Gorny, M. K. et al. Production of site-selected neutralizing human monoclonal antibodies against the third variable domain of the human immunodeficiency virus type 1 envelope glycoprotein. Proc. Natl Acad. Sci. USA 88, 3238–3242 (1991).
pubmed: 2014246
pmcid: 51421
doi: 10.1073/pnas.88.8.3238
Deen, K. C. et al. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 331, 82–84 (1988).
pubmed: 3257544
doi: 10.1038/331082a0
Fisher, R. A. et al. HIV infection is blocked in vitro by recombinant soluble CD4. Nature 331, 76–78 (1988).
pubmed: 2829022
doi: 10.1038/331076a0
Stricher, F. et al. Combinatorial optimization of a CD4-mimetic miniprotein and cocrystal structures with HIV-1 gp120 envelope glycoprotein. J. Mol. Biol. 382, 510–524 (2008).
pubmed: 18619974
pmcid: 2625307
doi: 10.1016/j.jmb.2008.06.069
Haas, J., Park, E. C. & Seed, B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol.: CB 6, 315–324 (1996).
pubmed: 8805248
doi: 10.1016/S0960-9822(02)00482-7
Andre, S. et al. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 72, 1497–1503 (1998).
pubmed: 9445053
pmcid: 124631
doi: 10.1128/JVI.72.2.1497-1503.1998
Barouch, D. H. et al. A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J. Virol. 79, 8828–8834 (2005).
pubmed: 15994776
pmcid: 1168733
doi: 10.1128/JVI.79.14.8828-8834.2005
Binley, J. M. et al. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 76, 2606–2616 (2002).
pubmed: 11861826
pmcid: 135977
doi: 10.1128/JVI.76.6.2606-2616.2002
Selvarajah, S. et al. Comparing antigenicity and immunogenicity of engineered gp120. J. Virol. 79, 12148–12163 (2005).
pubmed: 16160142
pmcid: 1211546
doi: 10.1128/JVI.79.19.12148-12163.2005
Dreier, B. & Plückthun, A. Rapid selection of high-affinity binders using ribosome display. Methods Mol. Biol. 805, 261–286 (2012).
pubmed: 22094811
doi: 10.1007/978-1-61779-379-0_15
Zahnd, C., Amstutz, P. & Plückthun, A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. methods 4, 269–279 (2007).
pubmed: 17327848
doi: 10.1038/nmeth1003
Binz, H. K., Kohl, A., Pluckthun, A. & Grutter, M. G. Crystal structure of a consensus-designed ankyrin repeat protein: implications for stability. Proteins 65, 280–284 (2006).
pubmed: 16493627
doi: 10.1002/prot.20930
Schilling, J., Schöppe, J. & Plückthun, A. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J. Mol. Biol. 426, 691–721 (2014).
pubmed: 24513107
doi: 10.1016/j.jmb.2013.10.026
Interlandi, G., Wetzel, S. K., Settanni, G., Plückthun, A. & Caflisch, A. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. J. Mol. Biol. 375, 837–854 (2008).
pubmed: 18048057
doi: 10.1016/j.jmb.2007.09.042
West, A. P. Jr. et al. Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy. Cell 156, 633–648 (2014).
pubmed: 24529371
pmcid: 4041625
doi: 10.1016/j.cell.2014.01.052
Kohl, A. et al. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc. Natl Acad. Sci. USA 100, 1700–1705 (2003).
pubmed: 12566564
pmcid: 149896
doi: 10.1073/pnas.0337680100
Liechti, T. et al. Development of a high-throughput bead based assay system to measure HIV-1 specific immune signatures in clinical samples. J. immunological methods 454, 48–58 (2018).
doi: 10.1016/j.jim.2017.12.003
Ho, S. H. et al. Coreceptor switch in R5-tropic simian/human immunodeficiency virus-infected macaques. J. Virol. 81, 8621–8633 (2007).
pubmed: 17537860
pmcid: 1951359
doi: 10.1128/JVI.00759-07
Rusert, P. et al. Divergent effects of cell environment on HIV entry inhibitor activity. AIDS 23, 1319–1327 (2009).
pubmed: 19579289
doi: 10.1097/QAD.0b013e32832d92c2
Pantophlet, R. et al. Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J. Virol. 77, 642–658 (2003).
pubmed: 12477867
pmcid: 140633
doi: 10.1128/JVI.77.1.642-658.2003
Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).
pubmed: 19729618
pmcid: 3335270
doi: 10.1126/science.1178746
Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D. 66, 133–144 (2010).
doi: 10.1107/S0907444909047374
McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. Sect. D.63, 32–41 (2007).
doi: 10.1107/S0907444906045975
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D.67, 355–367 (2011).
doi: 10.1107/S0907444911001314
Finke, A. D. et al. Advanced crystallographic data collection protocols for experimental phasing. Methods Mol. Biol. 1320, 175–191 (2016).
pubmed: 26227043
doi: 10.1007/978-1-4939-2763-0_11
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D. 68, 352–367 (2012).
doi: 10.1107/S0907444912001308
Afonine, P. V. et al. Joint X-ray and neutron refinement with phenix.refine. Acta Crystallogr. Sect. D. 66, 1153–1163 (2010).
doi: 10.1107/S0907444910026582
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Karplus, P. A. & Diederichs, K. Assessing and maximizing data quality in macromolecular crystallography. Curr. Opin. Struct. Biol. 34, 60–68 (2015).
pubmed: 26209821
pmcid: 4684713
doi: 10.1016/j.sbi.2015.07.003
Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).
pubmed: 22628654
pmcid: 3457925
doi: 10.1126/science.1218231
Laskowski, R. A. & Swindells, M. B. LigPlot + : multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. modeling 51, 2778–2786 (2011).
doi: 10.1021/ci200227u
Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic acids Res. 43, W314–W319 (2015).
pubmed: 25908787
pmcid: 4489313
doi: 10.1093/nar/gkv314
Lemmin, T. & Soto, C. Glycosylator: a Python framework for the rapid modeling of glycans. BMC Bioinforma. 20, 513 (2019).
doi: 10.1186/s12859-019-3097-6
Guvench, O. et al. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J. Chem. theory Comput. 7, 3162–3180 (2011).
pubmed: 22125473
pmcid: 3224046
doi: 10.1021/ct200328p
Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. computational Chem. 34, 2135–2145 (2013).
doi: 10.1002/jcc.23354
Harvey, M. J., Giupponi, G. & Fabritiis, G. D. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. theory Comput. 5, 1632–1639 (2009).
pubmed: 26609855
doi: 10.1021/ct9000685
Chaudhury, S. et al. Benchmarking and analysis of protein docking performance in Rosetta v3.2. PloS ONE 6, e22477 (2011).
pubmed: 21829626
pmcid: 3149062
doi: 10.1371/journal.pone.0022477
Schoeni-Affolter, F. et al. Cohort profile: the Swiss HIV Cohort study. Int. J. Epidemiol. 39, 1179–1189 (2010).
pubmed: 19948780
doi: 10.1093/ije/dyp321
Yang, W. L. et al. Assessing efficacy of different nucleos(t)ide backbones in NNRTI-containing regimens in the Swiss HIV Cohort Study. J. antimicrobial Chemother. 70, 3323–3331 (2015).
Rieder, P. et al. Characterization of human immunodeficiency virus type 1 (HIV-1) diversity and tropism in 145 patients with primary HIV-1 infection. Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am. 53, 1271–1279 (2011).
doi: 10.1093/cid/cir725
Kouyos, R. D. et al. Tracing HIV-1 strains that imprint broadly neutralizing antibody responses. Nature 561, 406–410 (2018).
pubmed: 30202088
doi: 10.1038/s41586-018-0517-0
Kouyos, R. D. et al. Ambiguous nucleotide calls from population-based sequencing of HIV-1 are a marker for viral diversity and the age of infection. Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am. 52, 532–539 (2011).
doi: 10.1093/cid/ciq164
van der Maaten, L. J. P. & Hinton, G. E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).