Finite element analysis of the performance of additively manufactured scaffolds for scapholunate ligament reconstruction.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2021
2021
Historique:
received:
23
05
2021
accepted:
07
08
2021
entrez:
19
11
2021
pubmed:
20
11
2021
medline:
25
12
2021
Statut:
epublish
Résumé
Rupture of the scapholunate interosseous ligament can cause the dissociation of scaphoid and lunate bones, resulting in impaired wrist function. Current treatments (e.g., tendon-based surgical reconstruction, screw-based fixation, fusion, or carpectomy) may restore wrist stability, but do not address regeneration of the ruptured ligament, and may result in wrist functional limitations and osteoarthritis. Recently a novel multiphasic bone-ligament-bone scaffold was proposed, which aims to reconstruct the ruptured ligament, and which can be 3D-printed using medical-grade polycaprolactone. This scaffold is composed of a central ligament-scaffold section and features a bone attachment terminal at either end. Since the ligament-scaffold is the primary load bearing structure during physiological wrist motion, its geometry, mechanical properties, and the surgical placement of the scaffold are critical for performance optimisation. This study presents a patient-specific computational biomechanical evaluation of the effect of scaffold length, and positioning of the bone attachment sites. Through segmentation and image processing of medical image data for natural wrist motion, detailed 3D geometries as well as patient-specific physiological wrist motion could be derived. This data formed the input for detailed finite element analysis, enabling computational of scaffold stress and strain distributions, which are key predictors of scaffold structural integrity. The computational analysis demonstrated that longer scaffolds present reduced peak scaffold stresses and a more homogeneous stress state compared to shorter scaffolds. Furthermore, it was found that scaffolds attached at proximal sites experience lower stresses than those attached at distal sites. However, scaffold length, rather than bone terminal location, most strongly influences peak stress. For each scaffold terminal placement configuration, a basic metric was computed indicative of bone fracture risk. This metric was the minimum distance from the bone surface to the internal scaffold bone terminal. Analysis of this minimum bone thickness data confirmed further optimisation of terminal locations is warranted.
Identifiants
pubmed: 34797871
doi: 10.1371/journal.pone.0256528
pii: PONE-D-21-15532
pmc: PMC8604338
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0256528Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Hand Surg Eur Vol. 2008 Jun;33(3):286-91
pubmed: 18562358
J Exp Zool A Ecol Genet Physiol. 2010 Jun 1;313(5):262-79
pubmed: 20095029
Rom J Morphol Embryol. 2005;46(3):189-91
pubmed: 16444304
Med Eng Phys. 2010 Jun;32(5):523-31
pubmed: 20303315
J Mech Behav Biomed Mater. 2021 Aug;120:104594
pubmed: 34029944
Semin Arthroplasty. 1995 Jan;6(1):30-6
pubmed: 10155684
Clin Oral Implants Res. 2020 May;31(5):431-441
pubmed: 31957069
Int J Biol Macromol. 2020 Apr 15;149:381-394
pubmed: 31978480
Med Eng Phys. 2012 Nov;34(9):1294-302
pubmed: 22277308
J Hand Surg Am. 1995 May;20(3 Pt 2):S82-5
pubmed: 7642955
J Hand Surg Am. 2011 Jan;36(1):31-6
pubmed: 21093178
J Hand Surg Am. 2013 Dec;38(12):2466-77
pubmed: 24275054
Chem Rev. 2017 Aug 9;117(15):10212-10290
pubmed: 28756658
J Biomech. 1986;19(11):951-5
pubmed: 3793742
Iowa Orthop J. 2005;25:108-17
pubmed: 16089082
Bioact Mater. 2019 Oct 25;4:271-292
pubmed: 31709311
Adv Healthc Mater. 2019 Jul;8(14):e1900133
pubmed: 31112356
J Hand Surg Br. 2000 Oct;25(5):492-8
pubmed: 10991821
J Hand Surg Eur Vol. 2015 Nov;40(9):973-85
pubmed: 25770899
J Hand Surg Am. 2007 Feb;32(2):256-64
pubmed: 17275604
J Hand Surg Eur Vol. 2011 Oct;36(8):682-9
pubmed: 21712303
J Hand Surg Am. 2006 Jan;31(1):125-34
pubmed: 16443117
Acta Biomater. 2019 May;90:393-402
pubmed: 30965142
J Vis Exp. 2021 Feb 4;(168):
pubmed: 33616093
Acta Orthop Belg. 2001 Jun;67(3):236-41
pubmed: 11486685
Ann Biomed Eng. 2003 Jun;31(6):718-25
pubmed: 12797622
J Biomech. 2013 Feb 1;46(3):567-73
pubmed: 23084785
J Biomech. 2001 Nov;34(11):1429-38
pubmed: 11672717
J Hand Surg Am. 1999 Sep;24(5):968-76
pubmed: 10509275
J Hand Surg Am. 2015 Mar;40(3):583-5
pubmed: 25499841
Hand Clin. 1992 Nov;8(4):645-52
pubmed: 1460063
J Mech Behav Biomed Mater. 2016 Mar;56:218-228
pubmed: 26719933
J Biomech Eng. 2012 Jan;134(1):011005
pubmed: 22482660
J Biomech. 1997 Aug;30(8):787-93
pubmed: 9239563
EFORT Open Rev. 2017 Sep 19;2(9):382-393
pubmed: 29071123
Hand (N Y). 2013 Jun;8(2):146-56
pubmed: 24426911
J Hand Surg Am. 2015 Aug;40(8):1525-33
pubmed: 26026356
J Biomech. 2019 Jul 19;92:120-125
pubmed: 31174845
Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:554-564
pubmed: 30184782
J Hand Surg Am. 1996 Mar;21(2):170-8
pubmed: 8683042
J Hand Surg Am. 2014 Apr;39(4):643-50
pubmed: 24559758
World J Surg. 1991 Jul-Aug;15(4):463-9
pubmed: 1891931
J Biomech. 2010 Aug 26;43(12):2274-80
pubmed: 20483410
J Biomech Eng. 1998 Feb;120(1):62-70
pubmed: 9675682
J Craniofac Surg. 2019 May/Jun;30(3):784-789
pubmed: 30896514
Med Sci Monit. 2019 Oct 01;25:7361-7369
pubmed: 31570688
J Orthop Surg Res. 2016 Sep 16;11(1):99
pubmed: 27633260
Med Eng Phys. 2009 Mar;31(2):188-94
pubmed: 18801695
J Hand Surg Am. 1999 Sep;24(5):953-62
pubmed: 10509273
J Orthop Res. 2019 Dec;37(12):2661-2670
pubmed: 31378991
Birth Defects Res C Embryo Today. 2005 Sep;75(3):226-36
pubmed: 16187327
Macromol Biosci. 2008 Jul 7;8(7):655-64
pubmed: 18350540
J Hand Surg Am. 2017 Sep;42(9):727-735
pubmed: 28751113
J Biomech. 1999 Aug;32(8):821-8
pubmed: 10433424
Comput Methods Biomech Biomed Engin. 2013;16(2):130-40
pubmed: 22128759
J Biomech. 2021 Aug 26;125:110567
pubmed: 34246909
Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:153-165
pubmed: 30606521
J Biomech. 2009 Jan 19;42(2):116-24
pubmed: 19110251
J Biomech Eng. 2011 Dec;133(12):121002
pubmed: 22206419