Diosgenin a steroidal compound: An emerging way to cancer management.
bioactive compound
cancer
cell death mechanism
diosgenin
suppressor protein
Journal
Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
revised:
09
11
2021
received:
14
09
2021
accepted:
09
11
2021
pubmed:
21
11
2021
medline:
27
1
2022
entrez:
20
11
2021
Statut:
ppublish
Résumé
To endure respective research for cancer via common food ingredients has become more prominent with preferably minuscule toxicity. Spices are emerging as a new source of bioactive compounds which have the potential to cure cancer. Fenugreek is rich in diosgenin that has curative and preventive potency toward various cancers. Cancer is invading various cellular mechanisms by altering cellular receptors. Cancer falsifies healthy cells by altered cell receptors like p38, p53, mTOR, Akt, and PARP. Distinct stages of cancer development are triggered by various cellular mechanisms. Diosgenin helps in suppressing cancer mechanisms and induces programmed cell death. Diosgenin brought changes in treatment line of lung, breast, prostate, liver, and colon cancer. Apoptosis changes cytoplasmic different caspase pathways and triggers selected sequence for cancer cell line death. Cell death comprised of series of events carried out by metalloprotease caspase. The complex relationship among cancer, caspase, cell death, and cellular receptors is reviewed in this article in respect of diosgenin. The utilization of diosgenin in creating a bar for cancer, its triggering sites, and various ways to cause apoptosis of abnormal cells. This article focused on diosgenin, its role in the prevention of different cancer and cellular apoptosis throughout different pathways involved in complex interaction of bioactive compound-cellular mechanism cancer. PRACTICAL APPLICATIONS: The concept of curing diseases from daily routine food is quite old. Fenugreek is an excellent source of various bioactive compounds especially diosgenin. Diosgenin is steroidal sapogenin that cures various health issues including cancers. Cancer is one of the most life-threating disease which can affect any cell, tissue, and organ in living system. Diosgenin is proved to be beneficial in terms curing cancer of various types but majorly include lung, liver, colon breast, and prostate. Cancer cure with diosgenin is providing a new base to the pharmaceutical and medical researchers to commence new and more specific journey of diosgenin. Diosgenin could alter cellular pathways that modify cell mechanism in way toward treating cancer. Cell mechanism mainly affected by the interaction of cell signals and cell different receptors that cause triggered cell death. This review article focused over various cancer and diosgenin effect in controlling different cellular pathways which include cellular signaling and cell death mechanism.
Substances chimiques
Diosgenin
K49P2K8WLX
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14005Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Aggarwal, B. B., & Shishodia, S. (2006). Molecular targets of dietary agents for prevention and therapy of cancer. Biochemical Pharmacology, 71, 1397-1421. https://doi.org/10.1016/j.bcp.2006.02.009
Alenzi, M. J., Ghazy, A. A., & Taha, D. E. (2021). The weight of HLA-DPA1 rs3077 single nucleotide polymorphism in prostate cancer, a multicenter study. Prostate Cancer, 2021, 1-5. https://doi.org/10.1155/2021/5539851
Al-Habori, M., & Raman, A. (2002). Pharmalogical properties. In G. A. Petropoulos (Ed.), Fenugreek: The genus Trigonella (pp. 163-182). Taylor and Francis.
Allow, A. K., Rashad, A. A. T., Saeed, M. S., & Bracamonte, M. A. (2009). Life-birth rate following metformin mono-therapy in mono-cycle anavulatory yemeni infertile women with polycystic ovarian syndrome-PCOS. Benha MJ, 26, 325-341.
Benzie, I. F. (2000). Evolution of antioxidant defence mechanisms. European Journal of Nutrition, 39(2), 53-61. https://doi.org/10.1007/s003940070030
Blunden, G., & Rhodes, C. T. (1968). Stability of diosgenin. Journal of Pharmaceutical Sciences, 57(4), 602-604. https://doi.org/10.1002/jps.2600570411
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492
Bray, F., Ren, J. S., Masuyer, E., & Ferlay, J. (2013). Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International Journal of Cancer, 132(5), 1133-1145. https://doi.org/10.1002/ijc.27711
Calvani, M., Pasha, A., & Favre, C. (2020). Nutraceutical boom in cancer: Inside the labyrinth of reactive oxygen species. International Journal of Molecular Sciences, 21(6), 1936. https://doi.org/10.3390/ijms21061936
Celsa, C., Giuffrida, P., Giacchetto, C. M., Stornello, C., Rancatore, G., Grova, M., Ricciardi, M. R., Rizzo, S., Cammà, C., & Cabibbo, G. (2021). Hepatotoxicity of systemic therapies for unresectable hepatocellular carcinoma. Liver Cancer International. https://doi.org/10.1002/lci2.38
Chaudhary, S., Chaudhary, P. S., Chikara, S. K., Sharma, M. C., & Iriti, M. (2018). Review on fenugreek (Trigonella foenum-graecum L.) and its important secondary metabolite diosgenin. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 22-31.
Chen, J., Wu, W., He, X., Jia, L., Yang, J., Si, X., Yu, K., Li, S., Qiu, Y., Xu, K. E., Yin, P., Cao, Y., Li, Q., & Li, W. (2021). Exosomal miR-122-5p is related to the degree of myelosuppression caused by chemotherapy in patients with colorectal cancer. Cancer Management and Research, 13, 8329-8339. https://doi.org/10.2147/CMAR.S332384
Chiang, C. T., Way, T. D., Tsai, S. J., & Lin, J. K. (2007). Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Letters, 581(30), 5735-5742. https://doi.org/10.1016/j.febslet.2007.11.021
Chiang, S. S., Chang, S. P., & Pan, T. M. (2011). Osteoprotective effect of Monascus-fermented dioscorea in ovariectomized rat model of postmenopausal osteoporosis. Journal of Agricultural and Food Chemistry, 59(17), 9150-9157.
Collin, L. J., Maliniak, M. L., Cronin-Fenton, D. P., Ahern, T. P., Christensen, K. B., Ulrichsen, S. P., Damkier, P., Hamilton-Dutoit, S., Yacoub, R., Christiansen, P. M., Sørensen, H. T., & Lash, T. L. (2021). Hypoxia-inducible factor-1α expression and breast cancer recurrence in a Danish population-based case control study. Breast Cancer Research, 23, 1-11. https://doi.org/10.1186/s13058-021-01480-1
Conrad, M., Angeli, J. P. F., Vandenabeele, P., & Stockwell, B. R. (2016). Regulated necrosis: Disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 15, 348-366. https://doi.org/10.1038/nrd.2015.6
Corbiere, C., Battu, S., Liagre, B., Cardot, P. J., & Beneytout, J. L. (2004). SdFFF monitoring of cellular apoptosis induction by diosgenin and different inducers in the human 1547 osteosarcoma cell line. Journal of Chromatography B, 808, 255-262. https://doi.org/10.1016/j.jchromb.2004.05.026
Corbiere, C., Liagre, B., Bianchi, A., Bordji, K., Dauca, M., Netter, P., & Beneytout, J. L. (2003). Different contribution of apoptosis to the antiproliferative effects of diosgenin and other plant steroids, hecogenin and tigogenin, on human 1547 osteosarcoma cells. International Journal of Oncology, 22, 899-905. https://doi.org/10.3892/ijo.22.4.899
Corbiere, C., Liagre, B., Terro, F., & Beneytout, J. L. (2004). Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Research, 14(3), 188-196. https://doi.org/10.1038/sj.cr.7290219
Fernández-Herrera, M. A., López-Muñoz, H., Hernández-Vázquez, J. M., López-Dávila, M., Escobar-Sánchez, M. L., Sánchez-Sánchez, L., Pinto, B. M., & Sandoval-Ramírez, J. (2010). Synthesis of 26-hydroxy-22-oxocholestanic frameworks from diosgenin and hecogenin and their in vitro antiproliferative and apoptotic activity on human cervical cancer CaSki cells. Bioorganic and Medicinal Chemistry, 18(7), 2474-2484. http://doi.org/10.1016/j.bmc.2010.02.051
Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., & Kroemer, G. (2007). Cell death modalities: Classification and pathophysiological implications. Cell Death Differentiation, 14, 1237-1243. https://doi.org/10.1038/sj.cdd.4402148
Galluzzi, L., Pedro, J. M. B. S., Kepp, O., & Kroemer, G. (2016). Regulated cell death and adaptive stress responses. Cellular and Molecular Life Science, 73, 2405-2410. https://doi.org/10.1007/s00018-016-2209-y
Ghezali, L., Liagre, B., Limami, Y., Beneytout, J. L., & Leger, D. Y. (2014). Sonic hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia. Cells Public Library of Science ONE, 9(4), e95016. https://doi.org/10.1371/journal.pone.0095016
Guo, W., Chen, Y., Gao, J., Zhong, K., Wei, H., Li, K. E., Tang, M., Zhao, X., Liu, X., Nie, C., & Yuan, Z. (2019). Diosgenin exhibits tumor suppressive function via down-regulation of EZH2 in pancreatic cancer cells. Cell Cycle, 18(15), 1745-1758. https://doi.org/10.1080/15384101.2019.1632624
Hernández-Vázquez, J. M. V., López-Muñoz, H., Escobar-Sánchez, M. L., Flores-Guzmán, F., Weiss-Steider, B., Hilario-Martínez, J. C., Sandoval-Ramirez, J., Fernandez-Herrera, M. A., & Sánchez, L. S. (2020). Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. European Journal of Pharmacology, 871, 172942. https://doi.org/10.1016/j.ejphar.2020.172942
Horr, C., & Buechler, S. A. (2021). Breast cancer consensus subtypes: A system for subtyping breast cancer tumors based on gene expression. NPJ Breast Cancer, 7(1), 1-13. https://doi.org/10.1038/s41523-021-00345-2
Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and diseases. Nature, 461, 1071-1078. https://doi.org/10.1038/nature08467
Jesus, M., Martins, P. J. A., Gallardo, E., & Silvestre, S. (2016). Diosgenin: Recent highlights on pharmacology and analytical methodology. Journal of Analytical Methods in Chemistry, 2016, 1-16. https://doi.org/10.1155/2016/4156293
Jorgensen, I., Rayamajhi, M., & Miao, E. A. (2017). Programmed cell death as a defence against infection. Nature Reviews Immunology, 17, 151-164. https://doi.org/10.1038/nri.2016.147
Kim, D. S., Jeon, B. K., Lee, Y. E., Woo, W. H., & Mun, Y. J. (2012). Diosgenin induces apoptosis in HepG2 cells through generation of reactive oxygen species and mitochondrial pathway. Evidence-Based Complementary and Alternative Medicine, 12, 1-8. https://doi.org/10.1155/2012/981675
Kim, J. E., Go, J., Koh, E. K., Song, S. H., Sung, J. E., Lee, H. A., Kim, D. S., Son, H. J., Lee, H. S., Lee, C. Y., Hong, J. T., & Hwang, D. Y. (2016). Diosgenin effectively suppresses skin inflammation induced by phthalic anhydride in IL-4/Luc/CNS-1 transgenic mice. Bioscience, Biotechnology, and Biochemistry, 80(5), 891-901. https://doi.org/10.1080/09168451.2015.1135040
Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., Griel, A. E., & Etherton, T. D. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113(9), 71-88. https://doi.org/10.1016/S0002-9343(01)00995-0
Leger, D. Y., Liagre, B., & Beneytout, J. L. (2006). Role of MAPKs and NF-kappaB in diosgenin induced megakaryocytic differentiation and subsequent apoptosis in HEL cells. International Journal of Oncology, 28, 201-207.
Leger, D. Y., Liagre, B., Cardot, P. J., Beneytout, J. L., & Battu, S. (2004). Diosgenin dose dependent apoptosis and differentiation induction in human erythroleukemia cell line and sedimentation field-flow fractionation monitoring. Analytical Biochemistry, 335, 267-278. https://doi.org/10.1016/j.ab.2004.09.008
Leger, D. Y., Liagre, B., Corbiere, C., Cook-Moreau, J., & Beneytout, J. L. (2004). Diosgenin induces cell cycle arrest and apoptosis in HEL cells with increase in intracellular calcium level, activation of cPLA2 and COX-2 over expression. International Journal of Oncology, 25, 555-562. https://doi.org/10.3892/ijo.25.3.555
Lepage, C., Liagre, B., Cook-Moreau, J., Pinon, A., & Beneytout, J. L. (2010). Cyclooxygenase-2 and 5-lipoxygenase pathways in diosgenin-induced apoptosis in HT-29 and HCT-116 colon cancer cells. International Journal of Oncology, 36(5), 1183-1191.
Li, F., Fernandez, P. P., Rajendran, P., Hui, K. M., & Sethi, G. (2010). Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemo sensitization of human hepatocellular carcinoma cells. Cancer Letters, 292(2), 197-207. https://doi.org/10.1016/j.canlet.2009.12.003
Li, J., Liu, X., Guo, M., Liu, Y., Liu, S., & Yao, S. (2005). Electrochemical study of breast cancer cells MCF-7 and its application in evaluating the effect of diosgenin. Analytical Sciences, 21(5), 561-564. https://doi.org/10.2116/analsci.21.561
Liu, L. J., Liu, Y. Q., Chang, Y. R., Li, Q. J., & Wang, B. X. (2006). GCMS determination of diosgenin in rats plasma. Chinese Journal of Pharmaceutical Analysis, 26, 177-180.
Liu, Y., Zhou, Z., Yan, J., Wu, X., & Xu, G. (2020). Diosgenin exerts antitumor activity via downregulation of Skp2 in breast cancer cells. BioMed Research International, 2, 1-10. https://doi.org/10.1155/2020/8072639
Liu, Z., Yang, S., Zhou, S., Dong, S., & Du, J. (2021). Prognostic value of lncRNA DRAIC and miR-3940-3p in lung adenocarcinoma and their effect on lung adenocarcinoma cell progression. Cancer Management Research, 13, 8367-8376. https://doi.org/10.2147/CMAR.S320616
Lv, Y. C., Yang, J., Yao, F., Xie, W., Tang, Y. Y., Ouyang, X. P., He, P. P., Tan, Y. L., Li, T., Zhang, M., Liu, D., Cayabyab, F. S., Zheng, X. L., & Tang, C. K. (2015). Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis, 240(1), 80-89. https://doi.org/10.1016/j.atherosclerosis.2015.02.044
Mao, X. M., Zhou, P., Li, S. Y., Zhang, X. Y., Shen, J. X., Chen, Q. X., Zhuang, J. X., & Shen, D. Y. (2019). Diosgenin suppresses cholangiocarcinoma cells via inducing cell cycle arrest and mitochondria-mediated apoptosis. OncoTargets and Therapy, 12, 9093-9104.
Milella, M., Falcone, I., Conciatori, F., Cesta Incani, U., Del Curatolo, A., Inzerilli, N., Nuzzo, C. M. A., Vaccaro, V., Vari, S., Coqnetti, F., & Ciuffreda, L. (2015). PTEN: Multiple functions in human malignant tumors. Frontiers in Oncology, 5, 24. https://doi.org/10.3389/fonc.2015.00024
Mohammad, R. M., Muqbil, I., Lowe, L., Yedjou, C., Hsu, H.-Y., Lin, L.-T., Siegelin, M. D., Fimognari, C., Kumar, N. B., Dou, Q. P., Yang, H., Samadi, A. K., Russo, G. L., Spagnuolo, C., Ray, S. K., Chakrabarti, M., Morre, J. D., Coley, H. M., Honoki, K., … Azmi, A. S. (2015). Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 35, 78-103. https://doi.org/10.1016/j.semcancer.2015.03.001
Nagata, S., & Tanaka, M. (2017). Programmed cell death and the immune system. Nature Reviews Immunology, 17, 333-340. https://doi.org/10.1038/nri.2016.153
Nie, C., Zhou, J., Qin, X., Shi, X., Zeng, Q., Liu, J., Yan, S., & Zhang, L. (2016). Diosgenin-induced autophagy and apoptosis in a human prostate cancer cell line. Molecular Medicine Reports, 14, 4349-4359. https://doi.org/10.3892/mmr.2016.5750
Nikam, S. M., Menghani, Y. R., & Umekar, M. J. (2021). A review on nutraceuticals: A healthy way to treat brain cancer. GSC Biological and Pharmaceutical Sciences, 15(3), 335-348. https://doi.org/10.30574/gscbps.2021.15.3.0186
Pitot, H. C., Goldsworthy, T., & Moran, S. (1981). The natural history of carcinogenesis: Implications of experimental carcinogenesis in the genesis of human cancer. Journal of Supramolecular Structure and Cellular Biochemistry, 17(2), 133-146. https://doi.org/10.1002/jsscb.380170204
Qian, Z. G., Zhao, Z. J., Xu, Y., Qian, X., & Zhong, J. J. (2005). Highly efficient strategy for enhancing taxoid production by repeated elicitation with a newly synthesized jasmonate in fed batch cultivation of Taxus chinensis cells. Biotechnology and Bioengineering, 90(4), 516-521. https://doi.org/10.1002/bit.20460
Raju, J., & Bird, R. P. (2007). Diosgenin, a naturally occurring furostanols saponin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells. Cancer Letters, 255(2), 194-204. https://doi.org/10.1016/j.canlet.2007.04.011
Raju, J., & Mehta, R. (2008). Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutrition and Cancer, 61(1), 27-35. https://doi.org/10.1080/01635580802357352
Raju, J., Patlolla, J. M., Swamy, M. V., & Rao, C. V. (2004). Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol Biomarkers Prevention, 13, 1392-1398.
Raju, J., & Rao, C. V. (2012). Diosgenin, a steroid saponin constituent of yams and fenugreek: Emerging evidence for applications in medicine. Bioactive Compounds in Phytomedicine, 125, 143.
Salvador, J. A., Carvalho, J. F., Neves, M. A., Silvestre, S. M., Leitao, A. J., Silva, M. M. C., & Sá e Melo, M. L. (2013). Anticancer steroids: Linking natural and semi-synthetic compounds. Natural Product Reports, 30(2), 324-374. https://doi.org/10.1039/C2NP20082A
Saw, P. E., Lee, S., & Jon, S. (2019). Naturally occurring bioactive compound-derived nanoparticles for biomedical applications. Advanced Therapeutics, 2(5), 1800146. https://doi.org/10.1002/adtp.201800146
Sethi, G., Shanmugam, M. K., Warrier, S., Merarchi, M., Arfuso, F., Kumar, A. P., & Bishayee, A. (2018). Pro-apoptotic and anti-cancer properties of diosgenin: A comprehensive and critical review. Nutrients, 10(5), 645-657. https://doi.org/10.3390/nu10050645
Shishodia, S., & Aggarwal, B. B. (2006). Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the down-regulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene, 25, 1463-1473.
Smith, M. (2003). Therapeutic applications of fenugreek. Alternative Medicine Review, 8, 20-27.
Sowmyalakshmi, S., Ranga, R., Gairola, C. G., & Chendil, D. (2005). Effect of diosgenin (fenugreek) on breast cancer cells. Proceedings of the American Association for Cancer Research, 46, 5872.
Srinivasan, S., Koduru, S., Kumar, R., Venguswamy, G., Kyprianou, N., & Damodaran, C. (2009). Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. International Journal of Cancer, 125(4), 961-967. https://doi.org/10.1002/ijc.24419
Subramaniam, S., Selvaduray, K. R., & Radhakrishnan, A. K. (2019). Bioactive compounds: Natural defense against cancer? Biomolecules, 9(12), 758. https://doi.org/10.3390/biom9120758
Taylor, W. G., Elder, J. L., Chang, P. R., & Richards, K. W. (2000). Micro determination of diosgenin from fenugreek (Trigonella foenum-graecum) seeds. Journal of Agricultural and Food Chemistry, 48(11), 5206-5210. https://doi.org/10.1021/jf000467t
Wang, S. L., Cai, B., Cui, C. B., Liu, H. W., Wu, C. F., & Yao, X. S. (2004). Diosgenin-3-O-alpha-L-rhamnopyranosyl- (1!4)-beta-d-glucopyranoside obtained as a new anticancer agent from Dioscorea futschauensis induces apoptosis on human colon carcinoma HCT-15 cells via mitochondria-controlled apoptotic pathway. Journal of Asian Natural Products Research, 6, 115-125. https://doi.org/10.1080/1028602031000147357
Wani, S. A., & Kumar, P. (2018). Fenugreek: A review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences, 17(2), 97-106. https://doi.org/10.1016/j.jssas.2016.01.007
Yan, C. H. E. N., You-Mei, T. A. N. G., Su-Lan, Y. U., Yu-Wei, H. A. N., Jun-Ping, K. O. U., Bao-Lin, L. I. U., & Bo-Yang, Y. U. (2015). Advances in the pharmacological activities and mechanisms of diosgenin. Chinese Journal of Natural Medicines, 13(8), 578-587. https://doi.org/10.1016/S1875-5364(15)30053-4
Yu, H., Liu, Y., Niu, C., & Yu Cheng, Y. (2018). Diosgenin increased DDX3 expression in hepatocellular carcinoma. American Journal of Transitional Research,10(11), 3590-3599.
Zhang, J., Xie, J. J., Zhou, S. J., Chen, J., Hu, Q., Pu, J. X., & Lu, J. L. (2019). Diosgenin inhibits the expression of NEDD4 in prostate cancer cells. American Journal of Translational Research, 11(6), 3461.
Zheng, J., Zhou, Y., Li, Y., Xu, D. P., Li, S., & Li, H. B. (2016). Spices for prevention and treatment of cancers. Nutrients, 8(8), 495. https://doi.org/10.3390/nu8080495
Zhiwei, W., Inuzuka, H. F., Wan, L., Liu, P., & Gao, D. (2012). Skp2 is a promising therapeutic target in breast cancer. The Key Role of Ubiquitination and Sumoylationin Signaling and Cancer, 19, 1-10.
Zolfaghari, F., Rashidi-Monfared, S., Moieni, A., Abedini, D., & Ebrahimi, A. (2020). Improving diosgenin production and its biosynthesis in Trigonella foenum-graecum L. hairy root cultures. Industrial Crops and Products, 145, 112075.