Oscillatory active microrheology of active suspensions.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 Nov 2021
Historique:
received: 23 09 2021
accepted: 09 11 2021
entrez: 23 11 2021
pubmed: 24 11 2021
medline: 24 11 2021
Statut: epublish

Résumé

Using the method of Brownian dynamics, we investigate the dynamic properties of a 2d suspension of active disks at high Péclet numbers using active microrheology. In our simulations the tracer particle is driven either by a constant or an oscillatory external force. In the first case, we find that the mobility of the tracer initially appreciably decreases with the external force and then becomes approximately constant for larger forces. For an oscillatory driving force we find that the dynamic mobility shows a quite complex behavior-it displays a highly nonlinear behavior on both the amplitude and frequency of the driving force. In the range of forces studied, we do not observe a linear regime. This result is important because it reveals that a phenomenological description of tracer motion in active media in terms of a simple linear stochastic equation even with a memory-mobility kernel is not appropriate, in the general case.

Identifiants

pubmed: 34811417
doi: 10.1038/s41598-021-02103-7
pii: 10.1038/s41598-021-02103-7
pmc: PMC8608831
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22706

Informations de copyright

© 2021. The Author(s).

Références

Mason, T. G. & Weitz, D. A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995).
pubmed: 10058972 doi: 10.1103/PhysRevLett.74.1250
Mason, T. G., Gang, H. & Weitz, D. A. Rheology of complex fluids measured by dynamic light scattering. J. Mol. Struct. 383, 81–90 (1996).
doi: 10.1016/S0022-2860(96)09272-1
Gittes, F., Schnurr, B. D. O. P., MacKintosh, F. C. & Schmidt, C. F. Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79, 3286–3289 (1997).
doi: 10.1103/PhysRevLett.79.3286
Schnurr, B., Gittes, F., MacKintosh, F. C. & Schmidt, C. F. Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30, 7781–7792 (1997).
doi: 10.1021/ma970555n
Larson, R. G. The structure and rheology of complex fluids (Oxford University Press, 1999).
MacKintosh, F. C. & Schmidt, C. F. Microrheology. Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999).
doi: 10.1016/S1359-0294(99)90010-9
Waigh, T. A. Microrheology of complex fluids. Rep. Prog. Phys. 68, 685–742 (2005).
doi: 10.1088/0034-4885/68/3/R04
Cicuta, P. & Donald, A. M. Microrheology: A review of the method and applications. Soft Matter 3, 1449–1455 (2007).
pubmed: 32900099 doi: 10.1039/b706004c
Chen, D. T. N., Wen, Q., Janmey, P. A., Crocker, J. C. & Yodh, A. G. Rheology of soft materials. Annu. Rev. Condes. Matter Phys. 1, 301–322 (2010).
doi: 10.1146/annurev-conmatphys-070909-104120
Wilson, L. & Poon, W. C. K. Small-world rheology: An introduction to probe-based active microrheology. Phys. Chem. Chem. Phys. 13, 10617–10630 (2011).
pubmed: 21556428 doi: 10.1039/c0cp01564d
Waigh, T. A. Advances in microrheology of complex fluids. Rep. Prog. Phys. 79, 074601 (2016).
pubmed: 27245584 doi: 10.1088/0034-4885/79/7/074601
Zia, R. N. Active and passive microrheology: Theory and simulation. Annu. Rev. Fluid Mech. 50, 371–405 (2018).
doi: 10.1146/annurev-fluid-122316-044514
Carpen, I. C. & Brady, J. F. Microrheology of colloidal dispersions by Brownian dynamics simulations. J. Rheol. 49, 1483–1502 (2005).
doi: 10.1122/1.2085174
Khair, A. S. & Brady, J. F. “Microviscoelasticity’’ of colloidal dispersions. J. Rheol. 49, 1449–1481 (2005).
doi: 10.1122/1.2085173
Puertas, A. M. & Voigtmann, T. Microrheology of colloidal systems. J. Phys. Condens. Matter 26, 243101 (2014).
pubmed: 24848328 doi: 10.1088/0953-8984/26/24/243101
Weihs, D., Mason, T. G. & Teitell, M. A. Bio-microrheology: A frontier in microrheology. Biophys. J. 91, 4296–4305 (2006).
pubmed: 16963507 pmcid: 1635658 doi: 10.1529/biophysj.106.081109
Wirtz, D. Particle-tracking microrheology of living cells: Principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).
pubmed: 19416071 doi: 10.1146/annurev.biophys.050708.133724
Squires, T. M. & Brady, J. F. A simple paradigm for active and nonlinear microrheology. Phys. Fluids 17, 073101 (2005).
doi: 10.1063/1.1960607
Khair, A. S. & Brady, J. F. Single particle motion in colloidal dispersions: A simple model for active and nonlinear microrheology. J. Fluid Mech. 557, 73–117 (2006).
doi: 10.1017/S0022112006009608
Zia, R. N. & Brady, J. F. Single particle motion in colloidal dispersions: Force-induced diffusion. J. Fluid Mech. 658, 188–210 (2010).
doi: 10.1017/S0022112010001606
Swan, J. W., Zia, R. N. & Brady, J. F. Large amplitude oscillatory microrheology. J. Rheol. 58, 1–41 (2014).
doi: 10.1122/1.4826939
Schmiedeberg, M. & Stark, H. One-bead microrheology with rotating particles. Europhys. Lett. 69, 629–635 (2005).
doi: 10.1209/epl/i2004-10397-8
Romanczuk, P., Bär, M., Ebeling, W., Lindner, B. & Schimansky-Geier, L. Active Brownian particles. Eur. Phys. J. Spec. Top. 202, 1–162 (2012).
doi: 10.1140/epjst/e2012-01529-y
Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers: Single particle motion and collective behavior: A review. Rep. Prog. Phys. 78, 056601 (2015).
pubmed: 25919479 doi: 10.1088/0034-4885/78/5/056601
Zöttl, A. & Stark, H. Emergent behavior in active colloids. J. Phys. Condens. Matter 28, 253001 (2016).
doi: 10.1088/0953-8984/28/25/253001
Bechinger, C., Di Leonardo, R., Löwen, H., Volpe, G. & Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
doi: 10.1103/RevModPhys.88.045006
Takatori, S. C., Yan, W. & Brady, J. F. Swim pressure: Stress generation in active matter. Phys. Rev. Lett. 113, 028103 (2014).
pubmed: 25062240 doi: 10.1103/PhysRevLett.113.028103
Solon, A. P. et al. Pressure is not a state function for generic active fluids. Nat. Phys. 11, 673–678 (2015).
doi: 10.1038/nphys3377
Solon, A. P. et al. Pressure and phase equilibria in interacting active Brownian spheres. Phys. Rev. Lett. 114, 198301 (2015).
pubmed: 26024201 doi: 10.1103/PhysRevLett.114.198301
Zakine, R. et al. Surface tensions between active fluids and solid interfaces: Bare vs dressed. Phys. Rev. Lett. 124, 248003 (2020).
pubmed: 32639798 doi: 10.1103/PhysRevLett.124.248003
Malgaretti, P., Nowakowski, P. & Stark, H. Mechanical pressure and work cycle of confined active Brownian particles. Europhys. Lett. 134, 20002 (2021).
doi: 10.1209/0295-5075/134/20002
Elgeti, J. & Gompper, G. Self-propelled rods near surfaces. Europhys. Lett. 85, 38002 (2009).
doi: 10.1209/0295-5075/85/38002
Schaar, K., Zöttl, A. & Stark, H. Detention times of microswimmers close to surfaces: Influence of hydrodynamic interactions and noise. Phys. Rev. Lett. 115, 038101 (2015).
pubmed: 26230827 doi: 10.1103/PhysRevLett.115.038101
Angelani, L., Di Leonardo, R. & Ruocco, G. Self-starting micromotors in a bacterial bath. Phys. Rev. Lett. 102, 048104 (2009).
pubmed: 19257480 doi: 10.1103/PhysRevLett.102.048104
Di Leonardo, R. et al. Bacterial ratchet motors. Proc. Natl. Acad. Sci. 107, 9541–9545 (2010).
pubmed: 20457936 pmcid: 2906854 doi: 10.1073/pnas.0910426107
Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. Swimming bacteria power microscopic gears. Proc. Natl. Acad. Sci. 107, 969–974 (2010).
pubmed: 20080560 doi: 10.1073/pnas.0913015107
Angelani, L. & Di Leonardo, R. Geometrically biased random walks in bacteria-driven micro-shuttles. New. J. Phys. 12, 113017 (2010).
doi: 10.1088/1367-2630/12/11/113017
Kaiser, A. et al. Transport powered by bacterial turbulence. Phys. Rev. Lett. 112, 158101 (2014).
pubmed: 24785075 doi: 10.1103/PhysRevLett.112.158101
Mallory, S. A., Valeriani, C. & Cacciuto, A. Curvature-induced activation of a passive tracer in an active bath. Phys. Rev. E 90, 032309 (2014).
doi: 10.1103/PhysRevE.90.032309
Knežević, M. & Stark, H. Effective Langevin equations for a polar tracer in an active bath. New. J. Phys. 22, 113025 (2020).
doi: 10.1088/1367-2630/abc91e
Palacci, J., Sacanna, S., Vatchinsky, P. M., Chaikin, A. & Pine, D. J. Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 135, 15978–15981 (2013).
pubmed: 24131488 doi: 10.1021/ja406090s
Koumakis, N., Lepore, A., Maggi, C. & Di Leonardo, R. Targeted delivery of colloids by swimming bacteria. Nat. Commun. 4, 2588 (2013).
pubmed: 24100868 doi: 10.1038/ncomms3588
Simmchen, J. et al. Topological pathways guide chemical microswimmers. Nat. Commun. 7, 10598 (2016).
pubmed: 26856370 pmcid: 4748132 doi: 10.1038/ncomms10598
Stenhammar, J., Wittkowski, R., Marenduzzo, D. & Cates, M. E. Light-induced self-assembly of active rectification devices. Sci. Adv. 2, e1501850 (2016).
pubmed: 27051883 pmcid: 4820368 doi: 10.1126/sciadv.1501850
Mallory, S. A., Valeriani, C. & Cacciuto, A. An active approach to colloidal self-assembly. Annu. Rev. Phys. Chem. 69, 59–79 (2018).
pubmed: 29106809 doi: 10.1146/annurev-physchem-050317-021237
Wu, X.-L. & Libchaber, A. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, 3017–3020 (2000).
pubmed: 11019000 doi: 10.1103/PhysRevLett.84.3017
Chen, D. T. N. et al. Fluctuations and rheology in active bacterial suspensions. Phys. Rev. Lett. 99, 148302 (2007).
pubmed: 17930729 doi: 10.1103/PhysRevLett.99.148302
Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I. & Goldstein, R. E. Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103, 198103 (2009).
pubmed: 20365957 doi: 10.1103/PhysRevLett.103.198103
Miño, G. et al. Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106, 048102 (2011).
pubmed: 21405365 doi: 10.1103/PhysRevLett.106.048102
Valeriani, C., Li, M., Novosel, J., Arlt, J. & Marenduzzo, D. Colloids in a bacterial bath: Simulations and experiments. Soft Matter 7, 5228–5238 (2011).
doi: 10.1039/c1sm05260h
Maggi, C., Paoluzzi, M., Angelani, L. & Di Leonardo, R. Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath. Sci. Rep. 7, 17588 (2017).
pubmed: 29242505 pmcid: 5730581 doi: 10.1038/s41598-017-17900-2
Saintillan, D. Rheology of active fluids. Annu. Rev. Fluid Mech. 50, 563–592 (2018).
doi: 10.1146/annurev-fluid-010816-060049
Grégoire, G., Chaté, H. & Tu, Y. Active and passive particles: Modeling beads in a bacterial bath. Phys. Rev. Lett. 64, 011902 (2001).
Morozov, A. & Marenduzzo, D. Enhanced diffusion of tracer particles in dilute bacterial suspensions. Soft Matter 10, 2748–2758 (2014).
pubmed: 24668266 doi: 10.1039/c3sm52201f
Burkholder, E. W. & Brady, J. F. Tracer diffusion in active suspensions. Phys. Rev. E 95, 052605 (2017).
pubmed: 28618621 doi: 10.1103/PhysRevE.95.052605
Granek, O., Kafri, Y. & Tailleur, J. The anomalous transport of tracers in active baths (2021). http://arxiv.org/abs/2108.11970 .
Maes, C. On the second fluctuation-disipation theorem for nonequilibrium baths. J. Stat. Phys. 154, 705–722 (2014).
doi: 10.1007/s10955-013-0904-8
Dal Cengio, S., Levis, D. & Pagonabarraga, I. Linear response theory and Green–Kubo relations for active matter. Phys. Rev. Lett. 123, 238003 (2019).
doi: 10.1103/PhysRevLett.123.238003
Burkholder, E. W. & Brady, J. F. Fluctuation–dissipation in active matter. J. Chem. Phys. 150, 184901 (2019).
pubmed: 31091919 doi: 10.1063/1.5081725
Chaki, S. & Chakrabarti, R. Entropy production and work fluctuation relations for a single particle in active bath. Phys. A 511, 302–315 (2018).
doi: 10.1016/j.physa.2018.07.055
Chaki, S. & Chakrabarti, R. Effects of active fluctuations on energetics of a colloidal particle: Superdiffusion, dissipation and entropy production. Phys. A 530, 121574 (2019).
doi: 10.1016/j.physa.2019.121574
Burkholder, E. W. & Brady, J. F. Nonlinear microrheology of active Brownian suspensions. Soft Matter 16, 1034–1046 (2020).
pubmed: 31854425 doi: 10.1039/C9SM01713E
Reichhardt, C. & Olson Reichhardt, C. J. Active microrheology in active matter systems: Mobility, intermittency and avalanches. Phys. Rev. E 91, 032313 (2015).
doi: 10.1103/PhysRevE.91.032313
Filly, Y. & Marchetti, M. C. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012).
doi: 10.1103/PhysRevLett.108.235702
Redner, G. S., Hagan, M. F. & Baskaran, A. Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013).
pubmed: 23414035 doi: 10.1103/PhysRevLett.110.055701
Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).
doi: 10.1146/annurev-conmatphys-031214-014710
Balakrishnan, V. Elements of Nonequilibrium Statistical Mechanics (Springer, 2021).
doi: 10.1007/978-3-030-62233-6

Auteurs

Miloš Knežević (M)

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany. knezevic@campus.tu-berlin.de.

Luisa E Avilés Podgurski (LE)

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.

Holger Stark (H)

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.

Classifications MeSH