Transcript-targeted analysis reveals isoform alterations and double-hop fusions in breast cancer.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
22 11 2021
Historique:
received: 16 11 2020
accepted: 02 11 2021
entrez: 23 11 2021
pubmed: 24 11 2021
medline: 25 12 2021
Statut: epublish

Résumé

Although transcriptome alteration is an essential driver of carcinogenesis, the effects of chromosomal structural alterations on the cancer transcriptome are not yet fully understood. Short-read transcript sequencing has prevented researchers from directly exploring full-length transcripts, forcing them to focus on individual splice sites. Here, we develop a pipeline for Multi-Sample long-read Transcriptome Assembly (MuSTA), which enables construction of a transcriptome from long-read sequence data. Using the constructed transcriptome as a reference, we analyze RNA extracted from 22 clinical breast cancer specimens. We identify a comprehensive set of subtype-specific and differentially used isoforms, which extended our knowledge of isoform regulation to unannotated isoforms including a short form TNS3. We also find that the exon-intron structure of fusion transcripts depends on their genomic context, and we identify double-hop fusion transcripts that are transcribed from complex structural rearrangements. For example, a double-hop fusion results in aberrant expression of an endogenous retroviral gene, ERVFRD-1, which is normally expressed exclusively in placenta and is thought to protect fetus from maternal rejection; expression is elevated in several TCGA samples with ERVFRD-1 fusions. Our analyses provide direct evidence that full-length transcript sequencing of clinical samples can add to our understanding of cancer biology and genomics in general.

Identifiants

pubmed: 34811492
doi: 10.1038/s42003-021-02833-4
pii: 10.1038/s42003-021-02833-4
pmc: PMC8608905
doi:

Substances chimiques

Protein Isoforms 0
TNS3 protein, human 0
Tensins 0
RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1320

Subventions

Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 16K07143
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 21H02772

Informations de copyright

© 2021. The Author(s).

Références

Kim, J. & Eberwine, J. RNA: state memory and mediator of cellular phenotype. Trends Cell Biol. 20, 311–318 (2010).
pubmed: 20382532 pmcid: 2892202 doi: 10.1016/j.tcb.2010.03.003
Calabrese, C. et al. Genomic basis for rna alterations in cancer. Nature 578, 129–136 (2020).
pubmed: 32025019 pmcid: 7054216 doi: 10.1038/s41586-020-1970-0
Danan-Gotthold, M. et al. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 43, 5130–5144 (2015).
pubmed: 25908786 pmcid: 4446417 doi: 10.1093/nar/gkv210
Climente-González, H., Porta-Pardo, E., Godzik, A. & Eyras, E. The functional impact of alternative splicing in cancer. Cell Rep. 20, 2215–2226 (2017).
pubmed: 28854369 doi: 10.1016/j.celrep.2017.08.012
Biswas, K. et al. Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proc. Natl Acad. Sci. USA 114, 11440–11445 (2017).
pubmed: 29073069 pmcid: 5664520 doi: 10.1073/pnas.1708447114
Grelet, S. et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat. Cell Biol. 19, 1105–1115 (2017).
pubmed: 28825698 pmcid: 5578890 doi: 10.1038/ncb3595
Salton, M. et al. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat. Commun. 6, 7103 (2015).
pubmed: 25971842 doi: 10.1038/ncomms8103
Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
doi: 10.1038/ng.2764
Shiraishi, Y. et al. A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res. 28, 1111–1125 (2018).
pubmed: 30012835 pmcid: 6071634 doi: 10.1101/gr.231951.117
Farver, C. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6 (2018).
doi: 10.1016/j.ccell.2018.07.001
Soneson, C., Matthes, K. L., Nowicka, M., Law, C. W. & Robinson, M. D. Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage. Genome Biol. 17, 12 (2016).
Dueck, H. et al. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol. 16, 122 (2015).
pubmed: 26056000 pmcid: 4480509 doi: 10.1186/s13059-015-0683-4
Tilgner, H., Grubert, F., Sharon, D. & Snyder, M. P. Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proc. Natl Acad. Sci. USA 111, 9869–9874 (2014).
pubmed: 24961374 pmcid: 4103364 doi: 10.1073/pnas.1400447111
Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).
pubmed: 21067385 doi: 10.1056/NEJMra1001389
Kawazu, M. et al. Integrative analysis of genomic alterations in triple-negative breast cancer in association with homologous recombination deficiency. PLoS Genet. 13, 1–23 (2017).
doi: 10.1371/journal.pgen.1006853
Polak, P. et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49, 1476–1486 (2017).
pubmed: 28825726 pmcid: 7376751 doi: 10.1038/ng.3934
Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics Proteom. Bioinformatics 13, 278–289 (2015).
doi: 10.1016/j.gpb.2015.08.002
Gordon, S. P. et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS ONE 10, e0132628 (2015).
pubmed: 26177194 pmcid: 4503453 doi: 10.1371/journal.pone.0132628
Abdel-Ghany, S. E. et al. A survey of the sorghum transcriptome using single-molecule long reads. Nat. Commun. 7, 11706 (2016).
pubmed: 27339290 pmcid: 4931028 doi: 10.1038/ncomms11706
Wang, B. et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat. Commun. 7, 1–13 (2016).
Sadler, K. C. et al. High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Res. 28, 1415–1425 (2018).
pubmed: 30061115 pmcid: 6120630 doi: 10.1101/gr.223586.117
Tilgner, H. et al. Comprehensive transcriptome analysis using synthetic long read sequencing reveals molecular co-association of distant splicing events. Nat. Biotechnol. 33, 736–742 (2015).
pubmed: 25985263 pmcid: 4832928 doi: 10.1038/nbt.3242
Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).
doi: 10.1038/nbt.4259
Anvar, S. Y. et al. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol. 19, 1–18 (2018).
doi: 10.1186/s13059-018-1418-0
Jing, Y. et al. Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer. Oncogene 38, 3047–3060, https://doi.org/10.1038/s41388-018-0644-y (2019).
Chen, H. et al. Long‐read RNA sequencing identifies alternative splice variants in hepatocellular carcinoma and tumor‐specific isoforms. Hepatology 70, 1011–1025 (2019).
pubmed: 30637779 doi: 10.1002/hep.30500
Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–411 (2018).
pmcid: 5848618 doi: 10.1101/gr.222976.117
Tang, A. D. et al. Full-length transcript characterization of sf3b1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).
pubmed: 32188845 pmcid: 7080807 doi: 10.1038/s41467-020-15171-6
Chen, J. et al. Pervasive functional translation of noncanonical human open reading frames. Science 367, 1140–1146 (2020).
pubmed: 32139545 pmcid: 7289059 doi: 10.1126/science.aay0262
Garczyk, S. et al. AGR3 in breast cancer: prognostic impact and suitable serum-based biomarker for early cancer detection. PLoS ONE 10, e0122106 (2015).
pubmed: 25875093 pmcid: 4398490 doi: 10.1371/journal.pone.0122106
Wali, V. B. et al. Identification and validation of a novel biologics target in triple negative breast cancer. Sci. Rep. 9, 14934 (2019).
pubmed: 31624295 pmcid: 6797726 doi: 10.1038/s41598-019-51453-w
Pampalakis, G. et al. The klk5 protease suppresses breast cancer by repressing the mevalonate pathway. Oncotarget 5, 2390–2403 (2014).
pubmed: 24158494 doi: 10.18632/oncotarget.1235
Choi, S. K., Kim, H. S., Jin, T. & Moon, W. K. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer. Oncotarget 8, 11977–11989 (2017).
pubmed: 28060764 pmcid: 5355319 doi: 10.18632/oncotarget.14450
Bemmo, A. et al. Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities. PLoS ONE 5, e11981 (2010).
pubmed: 20700505 pmcid: 2917353 doi: 10.1371/journal.pone.0011981
Wang, R. et al. PrLZ, a novel prostate-specific and androgen-responsive gene of the tpd52 family, amplified in chromosome 8q21.1 and overexpressed in human prostate cancer. Cancer Res. 64, 1589–1594 (2004).
pubmed: 14996714 doi: 10.1158/0008-5472.CAN-03-3331
Zhang, D. et al. PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of stat3/bcl-2 pathway. Cancer Res. 71, 2193–2202 (2011).
pubmed: 21385902 pmcid: 3680512 doi: 10.1158/0008-5472.CAN-10-1791
Munkley, J. et al. Androgen-dependent alternative mRNA isoform expression in prostate cancer cells. F1000Research 7, 1189 (2018).
pubmed: 30271587 pmcid: 6143958 doi: 10.12688/f1000research.15604.1
Bjørklund, S. S. et al. Widespread alternative exon usage in clinically distinct subtypes of invasive ductal carcinoma. Sci. Rep. 7, 5568 (2017).
pubmed: 28717182 pmcid: 5514065 doi: 10.1038/s41598-017-05537-0
Qian, X. et al. The tensin-3 protein, including its sh2 domain, is phosphorylated by src and contributes to tumorigenesis and metastasis. Cancer Cell 16, 246–258 (2009).
pubmed: 19732724 pmcid: 3293497 doi: 10.1016/j.ccr.2009.07.031
Cao, X. et al. A phosphorylation switch controls the spatiotemporal activation of rho GTPases in directional cell migration. Nat. Commun. 6, 7721 (2015).
Katz, M. et al. A reciprocal tensin-3-cten switch mediates egf-driven mammary cell migration. Nat. Cell Biol. 9, 961–969 (2007).
pubmed: 17643115 doi: 10.1038/ncb1622
Buniello, A. et al. The nhgri-ebi gwas catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434 doi: 10.1093/nar/gky1120
Carithers, L. J. et al. A novel approach to high-quality postmortem tissue procurement: the gtex project. Biopreserv. Biobank. 13, 311–319 (2015).
pubmed: 26484571 pmcid: 4675181 doi: 10.1089/bio.2015.0032
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).
pubmed: 29713083 pmcid: 5990442 doi: 10.1038/s41592-018-0001-7
Stephens, Z., Wang, C., Iyer, R. K. & Kocher, J.-P. Detection and visualization of complex structural variants from long reads. BMC Bioinformatics 19, 508 (2018).
pubmed: 30577744 pmcid: 6302372 doi: 10.1186/s12859-018-2539-x
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012 pmcid: 7025897 doi: 10.1038/s41586-019-1913-9
Kim, P. & Zhou, X. FusionGDB: fusion gene annotation database. Nucleic acids Res. 47, D994–D1004 (2019).
pubmed: 30407583 doi: 10.1093/nar/gky1067
Mangeney, M. et al. Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc. Natl Acad. Sci. USA 104, 20534–20539 (2007).
pubmed: 18077339 pmcid: 2154466 doi: 10.1073/pnas.0707873105
Togashi, Y. et al. MYB and mybl1 in adenoid cystic carcinoma: diversity in the mode of genomic rearrangement and transcripts. Mod. Pathol. 31, 934–946 (2018).
pubmed: 29410490 doi: 10.1038/s41379-018-0008-8
Aguado, C. et al. Response to crizotinib in a non-small-cell lung cancer patient harboring an eml4-alk fusion with an atypical ltbp1 insertion. OncoTargets Ther. 11, 1117–1120 (2018).
doi: 10.2147/OTT.S148363
Robesova, B. et al. Identification of atypical atrnl1 insertion to eml4-alk fusion gene in nsclc. Lung Cancer 87, 318–320 (2015).
pubmed: 25601488 doi: 10.1016/j.lungcan.2015.01.002
Saglio, G. et al. A 76-kb duplicon maps close to the bcr gene on chromosome 22 and the abl gene on chromosome 9: possible involvement in the genesis of the Philadelphia chromosome translocation. Proc. Natl Acad. Sci. USA 99, 9882–9887 (2002).
pubmed: 12114534 pmcid: 125051 doi: 10.1073/pnas.152171299
Shen, S., Wang, Y., Wang, C., Wu, Y. N. & Xing, Y. SURVIV for survival analysis of mRNA isoform variation. Nat. Commun. 7, 1–11 (2016).
doi: 10.1038/ncomms11548
Silvester, J. et al. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat. Commun. 8, 1126 (2017).
Franco, H. L. et al. Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res. 28, 159–170 (2018).
pubmed: 29273624 pmcid: 5793780 doi: 10.1101/gr.226019.117
Van den Berge, K., Soneson, C., Robinson, M. D. & Clement, L. StageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 18, 151 (2017).
pubmed: 28784146 pmcid: 5547545 doi: 10.1186/s13059-017-1277-0
Sondka, Z. et al. The cosmic cancer gene census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).
pubmed: 30293088 pmcid: 6450507 doi: 10.1038/s41568-018-0060-1
Liu, Y., Sun, J. & Zhao, M. ONGene: a literature-based database for human oncogenes. J. Genet. Genomics 44, 119–121 (2017).
pubmed: 28162959 doi: 10.1016/j.jgg.2016.12.004
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Prec. Oncol. 2017, PO.17.00011 (2017).
Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89 (2013).
pubmed: 23471004 pmcid: 3627598 doi: 10.1093/nar/gkt126
Dobin, A. et al. STAR: ultrafast universal rna-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
pubmed: 21816040 pmcid: 3163565 doi: 10.1186/1471-2105-12-323
Salmela, L. & Rivals, E. LoRDEC: accurate and efficient long read error correction. Bioinformatics 30, 3506–3514 (2014).
pubmed: 25165095 pmcid: 4253826 doi: 10.1093/bioinformatics/btu538
Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).
pubmed: 29229983 doi: 10.1038/s41588-017-0004-9
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
pubmed: 20003500 pmcid: 2803857 doi: 10.1186/1471-2105-10-421
Ono, Y., Asai, K. & Hamada, M. PBSIM: PacBio reads simulatortoward accurate genome assembly. Bioinformatics 29, 119–121 (2012).
pubmed: 23129296 doi: 10.1093/bioinformatics/bts649
Stöcker, B. K., Köster, J. & Rahmann, S. SimLoRD: simulation of long read data. Bioinformatics 32, 2704–2706 (2016).
pubmed: 27166244 doi: 10.1093/bioinformatics/btw286
Shcherbina, A. FASTQSim: platform-independent data characterization and in silico read generation for ngs datasets. BMC Res. Notes 7, 533 (2014).
pubmed: 25123167 pmcid: 4246604 doi: 10.1186/1756-0500-7-533
Byrne, A., Cole, C., Volden, R. & Vollmers, C. Realizing the potential of full-length transcriptome sequencing. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 374, 20190097 (2019).
doi: 10.1098/rstb.2019.0097
Frazee, A. C., Jaffe, A. E., Langmead, B. & Leek, J. T. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics 31, 2778–2784 (2015).
pubmed: 25926345 pmcid: 4635655 doi: 10.1093/bioinformatics/btv272
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with deseq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Love, M. I., Soneson, C. & Patro, R. Swimming downstream: statistical analysis of differential transcript usage following salmon quantification. F1000Research 7, 952 (2018).
pubmed: 30356428 pmcid: 6178912 doi: 10.12688/f1000research.15398.1
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2015).
Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 4025 (2012).
doi: 10.1101/gr.133744.111
Nowicka, M. & Robinson, M. D. DRIMSeq: a dirichlet-multinomial framework for multivariate count outcomes in genomics. F1000Research 5, 1356 (2016).
Trincado, J. L. et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19, 40 (2018).
pubmed: 29571299 pmcid: 5866513 doi: 10.1186/s13059-018-1417-1
Saraiva-Agostinho, N. & Barbosa-Morais, N. L. Psichomics: graphical application for alternative splicing quantification and analysis. Nucleic Acids Res. 47, e7 (2019).
pubmed: 30277515 doi: 10.1093/nar/gky888
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
pubmed: 21593126 pmcid: 3125773 doi: 10.1093/nar/gkr367
El-Gebali, S. et al. The pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2018).
pmcid: 6324024 doi: 10.1093/nar/gky995
Oki, S. et al. ChIP-atlas: a data-mining suite powered by full integration of public chip-seq data. EMBO Rep. 19, e46255 (2018).
Liu, J. et al. An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416.e11 (2018).
pubmed: 29625055 pmcid: 6066282 doi: 10.1016/j.cell.2018.02.052
Namba, S. Transcript-targeted analysis reveals isoform alterations and double-hop fusions in breast cancer. figshare https://doi.org/10.6084/m9.figshare.16681219.v2 (2021).

Auteurs

Shinichi Namba (S)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.

Toshihide Ueno (T)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Shinya Kojima (S)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Kenya Kobayashi (K)

Department of Head and Neck Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan.

Katsushige Kawase (K)

Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan.

Yosuke Tanaka (Y)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Satoshi Inoue (S)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Fumishi Kishigami (F)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Shusuke Kawashima (S)

Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan.

Noriko Maeda (N)

Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan.

Tomoko Ogawa (T)

Department of Breast Surgery, Mie University Hospital, Mie, 514-8507, Japan.

Shoichi Hazama (S)

Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan.

Yosuke Togashi (Y)

Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan.

Mizuo Ando (M)

Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo Hospital, Tokyo, 113-8654, Japan.

Yuichi Shiraishi (Y)

Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Hiroyuki Mano (H)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.

Masahito Kawazu (M)

Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan. mkawz-tky@umin.ac.jp.
Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan. mkawz-tky@umin.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH