Robust IgM responses following intravenous vaccination with Bacille Calmette-Guérin associate with prevention of Mycobacterium tuberculosis infection in macaques.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
12 2021
Historique:
received: 06 05 2021
accepted: 04 10 2021
pubmed: 24 11 2021
medline: 30 12 2021
entrez: 23 11 2021
Statut: ppublish

Résumé

Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.

Identifiants

pubmed: 34811542
doi: 10.1038/s41590-021-01066-1
pii: 10.1038/s41590-021-01066-1
pmc: PMC8642241
doi:

Substances chimiques

Antibodies, Bacterial 0
BCG Vaccine 0
Biomarkers 0
Immunoglobulin M 0

Types de publication

Comparative Study Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1515-1523

Subventions

Organisme : NCI NIH HHS
ID : U54 CA225088
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93019C00071
Pays : United States
Organisme : NIAID NIH HHS
ID : F31 AI150171
Pays : United States
Organisme : NCI NIH HHS
ID : U2C CA233280
Pays : United States
Organisme : NCI NIH HHS
ID : U2C CA233262
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI134240
Pays : United States
Organisme : NIH HHS
ID : P51 OD011133
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI138587
Pays : United States
Organisme : NIH HHS
ID : P51 OD011104
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI152157
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s).

Références

World Health Organization. Global Tuberculosis Report 2020 (WHO, Geneva, 2020).
Fine, P. E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346, 1339–1345 (1995).
pubmed: 7475776 doi: 10.1016/S0140-6736(95)92348-9
Caruso, A. M. et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis. J. Immunol. 162, 5407–5416 (1999).
pubmed: 10228018 doi: 10.4049/jimmunol.162.9.5407
Lin, P. L. et al. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res. Hum. Retroviruses 28, 1693–1702 (2012).
pubmed: 22480184 pmcid: 3505050 doi: 10.1089/aid.2012.0028
Diedrich, C. R. et al. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS ONE 5, e9611 (2010).
Esmail, H. et al. The immune response to Mycobacterium tuberculosis in HIV-1-coinfected persons. Annu. Rev. Immunol. 36, 603–638 (2018).
pubmed: 29490165 doi: 10.1146/annurev-immunol-042617-053420
Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013).
pubmed: 23391465 pmcid: 5424647 doi: 10.1016/S0140-6736(13)60177-4
Fletcher, H. A. et al. T cell activation is an immune correlate of risk in BCG vaccinated infants. Nat. Commun. 7, 11290 (2016).
pubmed: 27068708 pmcid: 4832066 doi: 10.1038/ncomms11290
Tait, D. R. et al. Final Analysis of a Trial of M72/AS01
pubmed: 31661198 doi: 10.1056/NEJMoa1909953
Nemes, E. et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 379, 138–149 (2018).
pubmed: 29996082 pmcid: 5937161 doi: 10.1056/NEJMoa1714021
Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).
pubmed: 31894150 pmcid: 7015856 doi: 10.1038/s41586-019-1817-8
Brown, E. P. et al. High-throughput, multiplexed IgG subclassing of antigen-specific antibodies from clinical samples. J. Immunol. Methods 386, 117–123 (2012).
pubmed: 23023091 pmcid: 3475184 doi: 10.1016/j.jim.2012.09.007
Yang, H., Kruh-Garcia, N. A. & Dobos, K. M. Purified protein derivatives of tuberculin—past, present and future. FEMS Immunol. Med. Microbiol. 66, 273–280 (2012).
pubmed: 22762692 pmcid: 3491170 doi: 10.1111/j.1574-695X.2012.01002.x
Mishra, A. K., Driessen, N. N., Appelmelk, B. J. & Besra, G. S. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev. 35, 1126–1157 (2011).
pubmed: 21521247 doi: 10.1111/j.1574-6976.2011.00276.x
Yuan, Y. et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl Acad. Sci. USA 95, 9578–9583 (1998).
pubmed: 9689123 pmcid: 21381 doi: 10.1073/pnas.95.16.9578
Esparza, M. et al. PstS-1, the 38-kDa Mycobacterium tuberculosis glycoprotein, is an adhesin, which binds the macrophage mannose receptor and promotes phagocytosis. Scand. J. Immunol. 81, 46–55 (2015).
pubmed: 25359607 doi: 10.1111/sji.12249
Ragas, A., Roussel, L., Puzo, G. & Rivière, M. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. J. Biol. Chem. 282, 5133–5142 (2007).
pubmed: 17158455 doi: 10.1074/jbc.M610183200
Hamasur, B. et al. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab') fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol. 138, 30–38 (2004).
pubmed: 15373902 pmcid: 1809178 doi: 10.1111/j.1365-2249.2004.02593.x
Balu, S. et al. A novel human IgA monoclonal antibody protects against tuberculosis. J. Immunol. 186, 3113–3119 (2011).
pubmed: 21257971 doi: 10.4049/jimmunol.1003189
Watson, A. et al. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat. Commun. 12, 602 (2021).
pubmed: 33504803 pmcid: 7840946 doi: 10.1038/s41467-021-20930-0
Lu, L. L. et al. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nat. Med. 25, 977–987 (2019).
pubmed: 31110348 pmcid: 6559862 doi: 10.1038/s41591-019-0441-3
Kunnath-Velayudhan, S. et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc. Natl Acad. Sci. USA 107, 14703–14708 (2010).
pubmed: 20668240 pmcid: 2930474 doi: 10.1073/pnas.1009080107
Pincetic, A. et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15, 707–716 (2014).
pubmed: 25045879 pmcid: 7430760 doi: 10.1038/ni.2939
Alter, G., Malenfant, J. M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).
pubmed: 15604012 doi: 10.1016/j.jim.2004.08.008
Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443 (2016).
pubmed: 27667685 pmcid: 5526202 doi: 10.1016/j.cell.2016.08.072
Martin, C. J. et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12, 289–300 (2012).
pubmed: 22980326 pmcid: 3517204 doi: 10.1016/j.chom.2012.06.010
Kaushal, D. et al. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat. Commun. 6, 8533 (2015).
Achkar, J. M., Chan, J. & Casadevall, A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol. Rev. 264, 167–181 (2015).
pubmed: 25703559 pmcid: 4629253 doi: 10.1111/imr.12276
Choudhary, A. et al. Characterization of the antigenic heterogeneity of lipoarabinomannan, the major surface glycolipid of Mycobacterium tuberculosis, and complexity of antibody specificities toward this antigen. J. Immunol. 200, 3053–3066 (2018).
pubmed: 29610143 pmcid: 5911930 doi: 10.4049/jimmunol.1701673
Andreu, N. et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS ONE 5, e10777 (2010).
pubmed: 20520722 pmcid: 2875389 doi: 10.1371/journal.pone.0010777
Plotkin, S. A. & Gilbert, P. B. Nomenclature for immune correlates of protection after vaccination. Clin. Infect. Dis. 54, 1615–1617 (2012).
pmcid: 3348952 doi: 10.1093/cid/cis238
Plotkin, S. A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17, 1055–1065 (2010).
pubmed: 20463105 pmcid: 2897268 doi: 10.1128/CVI.00131-10
Ehrenstein, M. R. & Notley, C. A. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10, 778–786 (2010).
pubmed: 20948548 doi: 10.1038/nri2849
Klimovich, V. B. IgM and its receptors: structural and functional aspects. Biochem. 76, 534–549 (2011).
Meryk, A. et al. Fcμ receptor as a costimulatory molecule for T cells. Cell Rep. 26, 2681–2691 (2019).
pubmed: 30840890 doi: 10.1016/j.celrep.2019.02.024
Dijkman, K. et al. Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nat. Med. 25, 255–262 (2019).
pubmed: 30664782 doi: 10.1038/s41591-018-0319-9
Balasubramanian, V., Wiegeshaus, E. H., Taylor, B. T. & Smith, D. W. Pathogenesis of tuberculosis: pathway to apical localization. Tuber. Lung Dis. 75, 168–178 (1994).
pubmed: 7919306 doi: 10.1016/0962-8479(94)90002-7
Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2019).
pubmed: 30510223 doi: 10.1038/s41590-018-0260-6
Onodera, T. et al. Memory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfection. Proc. Natl Acad. Sci. USA 109, 2485–2490 (2012).
pubmed: 22308386 pmcid: 3289300 doi: 10.1073/pnas.1115369109
Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334 (2020).
pubmed: 32544459 pmcid: 7295478 doi: 10.1016/j.chom.2020.05.014
Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190 (2018).
pubmed: 29328912 doi: 10.1016/j.cell.2017.12.031
Boruchov, A. M. et al. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 115, 2914–2923 (2005).
pmcid: 1201664 doi: 10.1172/JCI24772
Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H. & Lambrecht, B. N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 142, 94–108 (2014).
doi: 10.1038/nri3582
Hoffmann, E. et al. Autonomous phagosomal degradation and antigen presentation in dendritic cells. Proc. Natl Acad. Sci. USA 109, 14556–14561 (2012).
pubmed: 22908282 pmcid: 3437883 doi: 10.1073/pnas.1203912109
Schlottmann, S. A., Jain, N., Chirmule, N. & Esser, M. T. A novel chemistry for conjugating pneumococcal polysaccharides to Luminex microspheres. J. Immunol. Methods 309, 75–85 (2006).
pubmed: 16448665 doi: 10.1016/j.jim.2005.11.019
van Woudenbergh, E. et al. HIV is associated with modified humoral immune responses in the setting of HIV/TB coinfection. mSphere 5, e00104-20 (2020).
pubmed: 32434838 pmcid: 7380575 doi: 10.1128/mSphere.00104-20
Brown, E. P. et al. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. J. Immunol. Methods 443, 33–44 (2017).
pubmed: 28163018 pmcid: 5333794 doi: 10.1016/j.jim.2017.01.010
Karsten, C. B. et al. A versatile high-throughput assay to characterize antibody-mediated neutrophil phagocytosis. J. Immunol. Methods 471, 46–56 (2019).
pubmed: 31132351 pmcid: 6620195 doi: 10.1016/j.jim.2019.05.006
Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for 'omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).
pubmed: 29099853 pmcid: 5687754 doi: 10.1371/journal.pcbi.1005752
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

Auteurs

Edward B Irvine (EB)

Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Anthony O'Neil (A)

Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.

Patricia A Darrah (PA)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA.

Sally Shin (S)

Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.

Alok Choudhary (A)

Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.

Wenjun Li (W)

Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.

William Honnen (W)

Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.

Smriti Mehra (S)

Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA.

Deepak Kaushal (D)

Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.

Hannah Priyadarshini Gideon (HP)

Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

JoAnne L Flynn (JL)

Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Mario Roederer (M)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA.

Robert A Seder (RA)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA.

Abraham Pinter (A)

Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.

Sarah Fortune (S)

Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. sfortune@hsph.harvard.edu.
Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA. sfortune@hsph.harvard.edu.

Galit Alter (G)

Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. galter@mgh.harvard.edu.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Classifications MeSH