Cardiac CT and MRI radiomics: systematic review of the literature and radiomics quality score assessment.

Cardiovascular system Magnetic resonance imaging Multidetector computed tomography Systematic review

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Apr 2022
Historique:
received: 30 07 2021
accepted: 30 09 2021
revised: 06 09 2021
pubmed: 24 11 2021
medline: 17 3 2022
entrez: 23 11 2021
Statut: ppublish

Résumé

To systematically review and evaluate the methodological quality of studies using magnetic resonance imaging (MRI) and computed tomography (CT) radiomics for cardiac applications. Multiple medical literature archives (PubMed, Web of Science, and EMBASE) were systematically searched to retrieve original studies focused on cardiac MRI and CT radiomics applications. Two researchers in consensus assessed each investigation using the radiomics quality score (RQS). Subgroup analyses were performed to assess whether the total RQS varied according to study aim, journal quartile, imaging modality, and first author category. From a total of 1961 items, 53 articles were finally included in the analysis. Overall, the studies reached a median total RQS of 7 (IQR, 4-12), corresponding to a percentage score of 19.4% (IQR, 11.1-33.3%). Item scores were particularly low due to lack of prospective design, cost-effectiveness analysis, and open science. Median RQS percentage score was significantly higher in papers where the first author was a medical doctor and in those published on first quartile journals. The overall methodological quality of radiomics studies in cardiac MRI and CT is still lacking. A higher degree of standardization of the radiomics workflow and higher publication standards for studies are required to allow its translation into clinical practice. • RQS has been recently proposed for the overall assessment of the methodological quality of radiomics-based studies. • The 53 included studies on cardiac MRI and CT radiomics applications reached a median total RQS of 7 (IQR, 4-12), corresponding to a percentage of 19.4% (IQR, 11.1-33.3%). • A more standardized methodology in the radiomics workflow is needed, especially in terms of study design, validation, and open science, in order to translate the results to clinical applications.

Identifiants

pubmed: 34812912
doi: 10.1007/s00330-021-08375-x
pii: 10.1007/s00330-021-08375-x
doi:

Types de publication

Journal Article Review Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2629-2638

Informations de copyright

© 2021. The Author(s), under exclusive licence to European Society of Radiology.

Références

Sollini M, Antunovic L, Chiti A, Kirienko M (2019) Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 46:2656–2672. https://doi.org/10.1007/s00259-019-04372-x
doi: 10.1007/s00259-019-04372-x pubmed: 31214791 pmcid: 6879445
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169
doi: 10.1148/radiol.2015151169 pubmed: 26579733
Ashrafinia S, Dalaie P, Sadaghiani MS et al (2019) Radiomics analysis of clinical myocardial perfusion stress SPECT images to identify coronary artery calcification. Eur J Nucl Med Mol Imaging 46:S17–S18
Ma Q, Ma Y, Wang X et al (2021) A radiomic nomogram for prediction of major adverse cardiac events in ST-segment elevation myocardial infarction. Eur Radiol 31:1140–1150. https://doi.org/10.1007/s00330-020-07176-y
doi: 10.1007/s00330-020-07176-y pubmed: 32856164
Virani SS, Alonso A, Benjamin EJ, et al (2020) Heart Disease and Stroke Statistics—2020 update: a report from the American Heart Association. Circulation 141. https://doi.org/10.1161/CIR.0000000000000757
Selvanayagam JB (2016) Non-invasive cardiac imaging: past, present and future. Hear Lung Circ 25:755–756. https://doi.org/10.1016/j.hlc.2016.04.005
doi: 10.1016/j.hlc.2016.04.005
Cuocolo R, Ponsiglione A, Dell’Aversana S et al (2020) The cardiac conundrum: a systematic review and bibliometric analysis of authorship in cardiac magnetic resonance imaging studies. Insights Imaging 11:42. https://doi.org/10.1186/s13244-020-00850-1
doi: 10.1186/s13244-020-00850-1 pubmed: 32107649 pmcid: 7046856
Raisi-Estabragh Z, Izquierdo C, Campello VM et al (2020) Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. Eur Heart J Cardiovasc Imaging 21:349–356. https://doi.org/10.1093/ehjci/jeaa028
doi: 10.1093/ehjci/jeaa028 pubmed: 32142107 pmcid: 7082724
Ordovas KG, Seo Y (2020) Artificial intelligence pipeline for risk prediction in cardiovascular imaging. Circ Cardiovasc Imaging 13:e010427. https://doi.org/10.1161/CIRCIMAGING.120.010427
doi: 10.1161/CIRCIMAGING.120.010427 pubmed: 32066276
Hassani C, Saremi F, Varghese BA, Duddalwar V (2020) Myocardial radiomics in cardiac MRI. AJR Am J Roentgenol 214:536–545.  https://doi.org/10.2214/AJR.19.21986
doi: 10.2214/AJR.19.21986 pubmed: 31799865
Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P (2018) Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging 33:26–34. https://doi.org/10.1097/RTI.0000000000000268
doi: 10.1097/RTI.0000000000000268 pubmed: 28346329
Murgia A, Balestrieri A, Crivelli P, et al (2020) Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of coronary atherosclerosis. Cardiovasc Diagn Ther. 10:2005–2017. https://doi.org/10.21037/cdt-20-156
Xu P, Xue Y, Schoepf UJ et al (2021) Radiomics: the next frontier of cardiac computed tomography. Circ Cardiovasc Imaging 14:e011747. https://doi.org/10.1161/CIRCIMAGING.120.011747
doi: 10.1161/CIRCIMAGING.120.011747 pubmed: 33722057
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141
doi: 10.1038/nrclinonc.2017.141 pubmed: 28975929
Recht MP, Dewey M, Dreyer K et al (2020) Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur Radiol 30:3576–3584. https://doi.org/10.1007/s00330-020-06672-5
doi: 10.1007/s00330-020-06672-5 pubmed: 32064565
Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C et al (2019) Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int 13:546–559. https://doi.org/10.1007/s12072-019-09973-0
doi: 10.1007/s12072-019-09973-0 pubmed: 31473947
Won SY, Park YW, Ahn SS et al (2021) Quality assessment of meningioma radiomics studies: bridging the gap between exploratory research and clinical applications. Eur J Radiol 138:109673. https://doi.org/10.1016/j.ejrad.2021.109673
doi: 10.1016/j.ejrad.2021.109673 pubmed: 33774441
Stanzione A, Gambardella M, Cuocolo R et al (2020) Prostate MRI radiomics: a systematic review and radiomic quality score assessment. Eur J Radiol 129:109095. https://doi.org/10.1016/j.ejrad.2020.109095
doi: 10.1016/j.ejrad.2020.109095 pubmed: 32531722
Spadarella G, Calareso G, Garanzini E et al (2021) MRI based radiomics in nasopharyngeal cancer: systematic review and perspectives using radiomic quality score (RQS) assessment. Eur J Radiol 140:109744. https://doi.org/10.1016/j.ejrad.2021.109744
doi: 10.1016/j.ejrad.2021.109744 pubmed: 33962253
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535–b2535. https://doi.org/10.1136/bmj.b2535
doi: 10.1136/bmj.b2535 pubmed: 19622551 pmcid: 2714657
Ugga L, Perillo T, Cuocolo R, et al (2021) Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology. https://doi.org/10.1007/s00234-021-02668-0
R Core Team (2020) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria
Baessler B, Mannil M, Oebel S et al (2018) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 286:103–112. https://doi.org/10.1148/radiol.2017170213
doi: 10.1148/radiol.2017170213 pubmed: 28836886
Nam K, Suh YJ, Han K et al (2019) Value of computed tomography radiomic features for differentiation of periprosthetic mass in patients with suspected prosthetic valve obstruction. Circ Cardiovasc Imaging 12:e009496. https://doi.org/10.1161/CIRCIMAGING.119.009496
doi: 10.1161/CIRCIMAGING.119.009496 pubmed: 31739677
Baessler B, Luecke C, Lurz J et al (2019) Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology 292:608–617. https://doi.org/10.1148/radiol.2019190101
doi: 10.1148/radiol.2019190101 pubmed: 31361205
van Hamersvelt RW, Zreik M, Voskuil M et al (2019) Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur Radiol 29:2350–2359. https://doi.org/10.1007/s00330-018-5822-3
doi: 10.1007/s00330-018-5822-3 pubmed: 30421020
Neisius U, El-Rewaidy H, Nakamori S et al (2019) Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 12:1946–1954. https://doi.org/10.1016/j.jcmg.2018.11.024
doi: 10.1016/j.jcmg.2018.11.024 pubmed: 30660549 pmcid: 7032053
Park JE, Kim D, Kim HS et al (2020) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30:523–536. https://doi.org/10.1007/s00330-019-06360-z
doi: 10.1007/s00330-019-06360-z pubmed: 31350588
Zhong J, Hu Y, Si L et al (2021) A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation. Eur Radiol 31:1526–1535. https://doi.org/10.1007/s00330-020-07221-w
doi: 10.1007/s00330-020-07221-w pubmed: 32876837
Mackin D, Fave X, Zhang L et al (2015) Measuring computed tomography scanner variability of radiomics features. Invest Radiol 50:757–765. https://doi.org/10.1097/RLI.0000000000000180
doi: 10.1097/RLI.0000000000000180 pubmed: 26115366 pmcid: 4598251
Ursprung S, Beer L, Bruining A et al (2020) Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma—a systematic review and meta-analysis. Eur Radiol 30:3558–3566. https://doi.org/10.1007/s00330-020-06666-3
doi: 10.1007/s00330-020-06666-3 pubmed: 32060715 pmcid: 7248043
Sauerbrei W, Taube SE, McShane LM, Cavenagh MM, Altman DG (2018) Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): an abridged explanation and elaboration. J Natl Cancer Inst 110:803–811. https://doi.org/10.1093/jnci/djy088
doi: 10.1093/jnci/djy088 pubmed: 29873743 pmcid: 6093349
European Society of Radiology (ESR) (2020) ESR statement on the validation of imaging biomarkers. Insights Imaging 11:76. https://doi.org/10.1186/s13244-020-00872-9
doi: 10.1186/s13244-020-00872-9
Collins GS, Reitsma JB, Altman DG, Moons KGM (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med 13:1–10. https://doi.org/10.1186/s12916-014-0241-z
doi: 10.1186/s12916-014-0241-z pubmed: 25563062 pmcid: 4284921
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11:91. https://doi.org/10.1186/s13244-020-00887-2
doi: 10.1186/s13244-020-00887-2 pubmed: 32785796 pmcid: 7423816
Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057. https://doi.org/10.1007/s10278-013-9622-7
doi: 10.1007/s10278-013-9622-7 pubmed: 23884657 pmcid: 3824915
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597

Auteurs

Andrea Ponsiglione (A)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Arnaldo Stanzione (A)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Renato Cuocolo (R)

Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy. renato.cuocolo@unina.it.
Interdepartmental Research Center on Management and Innovation in Healthcare - CIRMIS, University of Naples Federico II, Naples, Italy. renato.cuocolo@unina.it.

Raffaele Ascione (R)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Michele Gambardella (M)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Marco De Giorgi (M)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Carmela Nappi (C)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Alberto Cuocolo (A)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Massimo Imbriaco (M)

Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH