Cardiac CT and MRI radiomics: systematic review of the literature and radiomics quality score assessment.
Cardiovascular system
Magnetic resonance imaging
Multidetector computed tomography
Systematic review
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
30
07
2021
accepted:
30
09
2021
revised:
06
09
2021
pubmed:
24
11
2021
medline:
17
3
2022
entrez:
23
11
2021
Statut:
ppublish
Résumé
To systematically review and evaluate the methodological quality of studies using magnetic resonance imaging (MRI) and computed tomography (CT) radiomics for cardiac applications. Multiple medical literature archives (PubMed, Web of Science, and EMBASE) were systematically searched to retrieve original studies focused on cardiac MRI and CT radiomics applications. Two researchers in consensus assessed each investigation using the radiomics quality score (RQS). Subgroup analyses were performed to assess whether the total RQS varied according to study aim, journal quartile, imaging modality, and first author category. From a total of 1961 items, 53 articles were finally included in the analysis. Overall, the studies reached a median total RQS of 7 (IQR, 4-12), corresponding to a percentage score of 19.4% (IQR, 11.1-33.3%). Item scores were particularly low due to lack of prospective design, cost-effectiveness analysis, and open science. Median RQS percentage score was significantly higher in papers where the first author was a medical doctor and in those published on first quartile journals. The overall methodological quality of radiomics studies in cardiac MRI and CT is still lacking. A higher degree of standardization of the radiomics workflow and higher publication standards for studies are required to allow its translation into clinical practice. • RQS has been recently proposed for the overall assessment of the methodological quality of radiomics-based studies. • The 53 included studies on cardiac MRI and CT radiomics applications reached a median total RQS of 7 (IQR, 4-12), corresponding to a percentage of 19.4% (IQR, 11.1-33.3%). • A more standardized methodology in the radiomics workflow is needed, especially in terms of study design, validation, and open science, in order to translate the results to clinical applications.
Identifiants
pubmed: 34812912
doi: 10.1007/s00330-021-08375-x
pii: 10.1007/s00330-021-08375-x
doi:
Types de publication
Journal Article
Review
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2629-2638Informations de copyright
© 2021. The Author(s), under exclusive licence to European Society of Radiology.
Références
Sollini M, Antunovic L, Chiti A, Kirienko M (2019) Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 46:2656–2672. https://doi.org/10.1007/s00259-019-04372-x
doi: 10.1007/s00259-019-04372-x
pubmed: 31214791
pmcid: 6879445
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169
doi: 10.1148/radiol.2015151169
pubmed: 26579733
Ashrafinia S, Dalaie P, Sadaghiani MS et al (2019) Radiomics analysis of clinical myocardial perfusion stress SPECT images to identify coronary artery calcification. Eur J Nucl Med Mol Imaging 46:S17–S18
Ma Q, Ma Y, Wang X et al (2021) A radiomic nomogram for prediction of major adverse cardiac events in ST-segment elevation myocardial infarction. Eur Radiol 31:1140–1150. https://doi.org/10.1007/s00330-020-07176-y
doi: 10.1007/s00330-020-07176-y
pubmed: 32856164
Virani SS, Alonso A, Benjamin EJ, et al (2020) Heart Disease and Stroke Statistics—2020 update: a report from the American Heart Association. Circulation 141. https://doi.org/10.1161/CIR.0000000000000757
Selvanayagam JB (2016) Non-invasive cardiac imaging: past, present and future. Hear Lung Circ 25:755–756. https://doi.org/10.1016/j.hlc.2016.04.005
doi: 10.1016/j.hlc.2016.04.005
Cuocolo R, Ponsiglione A, Dell’Aversana S et al (2020) The cardiac conundrum: a systematic review and bibliometric analysis of authorship in cardiac magnetic resonance imaging studies. Insights Imaging 11:42. https://doi.org/10.1186/s13244-020-00850-1
doi: 10.1186/s13244-020-00850-1
pubmed: 32107649
pmcid: 7046856
Raisi-Estabragh Z, Izquierdo C, Campello VM et al (2020) Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. Eur Heart J Cardiovasc Imaging 21:349–356. https://doi.org/10.1093/ehjci/jeaa028
doi: 10.1093/ehjci/jeaa028
pubmed: 32142107
pmcid: 7082724
Ordovas KG, Seo Y (2020) Artificial intelligence pipeline for risk prediction in cardiovascular imaging. Circ Cardiovasc Imaging 13:e010427. https://doi.org/10.1161/CIRCIMAGING.120.010427
doi: 10.1161/CIRCIMAGING.120.010427
pubmed: 32066276
Hassani C, Saremi F, Varghese BA, Duddalwar V (2020) Myocardial radiomics in cardiac MRI. AJR Am J Roentgenol 214:536–545. https://doi.org/10.2214/AJR.19.21986
doi: 10.2214/AJR.19.21986
pubmed: 31799865
Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P (2018) Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging 33:26–34. https://doi.org/10.1097/RTI.0000000000000268
doi: 10.1097/RTI.0000000000000268
pubmed: 28346329
Murgia A, Balestrieri A, Crivelli P, et al (2020) Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of coronary atherosclerosis. Cardiovasc Diagn Ther. 10:2005–2017. https://doi.org/10.21037/cdt-20-156
Xu P, Xue Y, Schoepf UJ et al (2021) Radiomics: the next frontier of cardiac computed tomography. Circ Cardiovasc Imaging 14:e011747. https://doi.org/10.1161/CIRCIMAGING.120.011747
doi: 10.1161/CIRCIMAGING.120.011747
pubmed: 33722057
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141
doi: 10.1038/nrclinonc.2017.141
pubmed: 28975929
Recht MP, Dewey M, Dreyer K et al (2020) Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur Radiol 30:3576–3584. https://doi.org/10.1007/s00330-020-06672-5
doi: 10.1007/s00330-020-06672-5
pubmed: 32064565
Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C et al (2019) Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int 13:546–559. https://doi.org/10.1007/s12072-019-09973-0
doi: 10.1007/s12072-019-09973-0
pubmed: 31473947
Won SY, Park YW, Ahn SS et al (2021) Quality assessment of meningioma radiomics studies: bridging the gap between exploratory research and clinical applications. Eur J Radiol 138:109673. https://doi.org/10.1016/j.ejrad.2021.109673
doi: 10.1016/j.ejrad.2021.109673
pubmed: 33774441
Stanzione A, Gambardella M, Cuocolo R et al (2020) Prostate MRI radiomics: a systematic review and radiomic quality score assessment. Eur J Radiol 129:109095. https://doi.org/10.1016/j.ejrad.2020.109095
doi: 10.1016/j.ejrad.2020.109095
pubmed: 32531722
Spadarella G, Calareso G, Garanzini E et al (2021) MRI based radiomics in nasopharyngeal cancer: systematic review and perspectives using radiomic quality score (RQS) assessment. Eur J Radiol 140:109744. https://doi.org/10.1016/j.ejrad.2021.109744
doi: 10.1016/j.ejrad.2021.109744
pubmed: 33962253
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535–b2535. https://doi.org/10.1136/bmj.b2535
doi: 10.1136/bmj.b2535
pubmed: 19622551
pmcid: 2714657
Ugga L, Perillo T, Cuocolo R, et al (2021) Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology. https://doi.org/10.1007/s00234-021-02668-0
R Core Team (2020) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria
Baessler B, Mannil M, Oebel S et al (2018) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 286:103–112. https://doi.org/10.1148/radiol.2017170213
doi: 10.1148/radiol.2017170213
pubmed: 28836886
Nam K, Suh YJ, Han K et al (2019) Value of computed tomography radiomic features for differentiation of periprosthetic mass in patients with suspected prosthetic valve obstruction. Circ Cardiovasc Imaging 12:e009496. https://doi.org/10.1161/CIRCIMAGING.119.009496
doi: 10.1161/CIRCIMAGING.119.009496
pubmed: 31739677
Baessler B, Luecke C, Lurz J et al (2019) Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology 292:608–617. https://doi.org/10.1148/radiol.2019190101
doi: 10.1148/radiol.2019190101
pubmed: 31361205
van Hamersvelt RW, Zreik M, Voskuil M et al (2019) Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur Radiol 29:2350–2359. https://doi.org/10.1007/s00330-018-5822-3
doi: 10.1007/s00330-018-5822-3
pubmed: 30421020
Neisius U, El-Rewaidy H, Nakamori S et al (2019) Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 12:1946–1954. https://doi.org/10.1016/j.jcmg.2018.11.024
doi: 10.1016/j.jcmg.2018.11.024
pubmed: 30660549
pmcid: 7032053
Park JE, Kim D, Kim HS et al (2020) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30:523–536. https://doi.org/10.1007/s00330-019-06360-z
doi: 10.1007/s00330-019-06360-z
pubmed: 31350588
Zhong J, Hu Y, Si L et al (2021) A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation. Eur Radiol 31:1526–1535. https://doi.org/10.1007/s00330-020-07221-w
doi: 10.1007/s00330-020-07221-w
pubmed: 32876837
Mackin D, Fave X, Zhang L et al (2015) Measuring computed tomography scanner variability of radiomics features. Invest Radiol 50:757–765. https://doi.org/10.1097/RLI.0000000000000180
doi: 10.1097/RLI.0000000000000180
pubmed: 26115366
pmcid: 4598251
Ursprung S, Beer L, Bruining A et al (2020) Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma—a systematic review and meta-analysis. Eur Radiol 30:3558–3566. https://doi.org/10.1007/s00330-020-06666-3
doi: 10.1007/s00330-020-06666-3
pubmed: 32060715
pmcid: 7248043
Sauerbrei W, Taube SE, McShane LM, Cavenagh MM, Altman DG (2018) Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): an abridged explanation and elaboration. J Natl Cancer Inst 110:803–811. https://doi.org/10.1093/jnci/djy088
doi: 10.1093/jnci/djy088
pubmed: 29873743
pmcid: 6093349
European Society of Radiology (ESR) (2020) ESR statement on the validation of imaging biomarkers. Insights Imaging 11:76. https://doi.org/10.1186/s13244-020-00872-9
doi: 10.1186/s13244-020-00872-9
Collins GS, Reitsma JB, Altman DG, Moons KGM (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med 13:1–10. https://doi.org/10.1186/s12916-014-0241-z
doi: 10.1186/s12916-014-0241-z
pubmed: 25563062
pmcid: 4284921
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 11:91. https://doi.org/10.1186/s13244-020-00887-2
doi: 10.1186/s13244-020-00887-2
pubmed: 32785796
pmcid: 7423816
Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057. https://doi.org/10.1007/s10278-013-9622-7
doi: 10.1007/s10278-013-9622-7
pubmed: 23884657
pmcid: 3824915
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597