Vibrational spectroscopy analysis of ligand efficacy in human M


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
23 11 2021
Historique:
received: 11 04 2021
accepted: 01 11 2021
entrez: 24 11 2021
pubmed: 25 11 2021
medline: 25 12 2021
Statut: epublish

Résumé

The intrinsic efficacy of ligand binding to G protein-coupled receptors (GPCRs) reflects the ability of the ligand to differentially activate its receptor to cause a physiological effect. Here we use attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to examine the ligand-dependent conformational changes in the human M

Identifiants

pubmed: 34815515
doi: 10.1038/s42003-021-02836-1
pii: 10.1038/s42003-021-02836-1
pmc: PMC8635417
doi:

Substances chimiques

CHRM2 protein, human 0
Ligands 0
Receptor, Muscarinic M2 0

Banques de données

figshare
['10.6084/m9.figshare.16608511']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1321

Subventions

Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 18K14662
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJPR19G4

Informations de copyright

© 2021. The Author(s).

Références

Kenakin, T. Drug efficacy at G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 42, 349–379 (2002).
pubmed: 11807176 doi: 10.1146/annurev.pharmtox.42.091401.113012
Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).
pubmed: 29925258 pmcid: 6535337 doi: 10.1146/annurev-biochem-060614-033910
Manglik, A. et al. Structural insights into the dynamics process of β
pubmed: 25981665 pmcid: 4441853 doi: 10.1016/j.cell.2015.04.043
Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007).
pubmed: 17629961 doi: 10.1016/j.tips.2007.06.003
Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).
pubmed: 19458711 pmcid: 3967846 doi: 10.1038/nature08144
Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).
pubmed: 28753422 pmcid: 5560499 doi: 10.1016/j.cell.2017.07.009
Kenakin, T. & Christopoulos, A. Analytical pharmacology: the impact of numbers on pharmacology. Trends Pharmacol. Sci. 32, 189–196 (2011).
pubmed: 21397341 doi: 10.1016/j.tips.2011.01.002
Kenakin, T. Efficacy at G-protein-coupled receptors. Nat. Rev. Drug. Discov. 1, 103–110 (2002).
pubmed: 12120091 doi: 10.1038/nrd722
Herenbrink, C. K. et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7, 10842–10856 (2016).
doi: 10.1038/ncomms10842
Katritch, V., Cherezov, V. & Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17–27 (2012).
pubmed: 22032986 doi: 10.1016/j.tips.2011.09.003
Warne, T., Edwards, P. C., Doré, A. S., Leslie, A. G. W. & Tate, C. G. Moleular basis for high-affinity agonist binding in GPCRs. Science 364, 775–778 (2019).
pubmed: 31072904 pmcid: 6586556 doi: 10.1126/science.aau5595
Liu, X. et al. Structural insights into the process of GPCR-G protein complex formation. Cell 177, 1243–1251 (2019).
pubmed: 31080070 pmcid: 6991123 doi: 10.1016/j.cell.2019.04.021
García-Nafría, J. & Tate, C. G. Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development. Annu. Rev. Pharmacol. Toxicol. 60, 51–71 (2020).
pubmed: 31348870 doi: 10.1146/annurev-pharmtox-010919-023545
Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012).
pubmed: 22278061 pmcid: 3345277 doi: 10.1038/nature10753
Suno, R. et al. Structural insights into the subtype-selective antagonist binding to the M
pubmed: 30420692 pmcid: 6462224 doi: 10.1038/s41589-018-0152-y
Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).
pubmed: 24256733 pmcid: 4020789 doi: 10.1038/nature12735
Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M
pubmed: 31073061 pmcid: 7034192 doi: 10.1126/science.aaw5188
Kofuku, Y. et al. Efficacy of the β
pubmed: 22948827 doi: 10.1038/ncomms2046
Solt, A. S. et al. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β
pubmed: 29176642 pmcid: 5702606 doi: 10.1038/s41467-017-02008-y
Okude, J. et al. Identification of a conformational equilibrium that determines the efficacy and functional selectivity of the μ-opioid receptor. Angew. Chem. Int. Ed. 54, 15771–15776 (2015).
doi: 10.1002/anie.201508794
Wu, F.-J. et al. Probing the correation between ligand efficacy and conformaitonal diversity at the α
pubmed: 32303636 pmcid: 7247315 doi: 10.1074/jbc.RA120.012842
Xu, J. et al. Conformational complexity and dynamics in a muscarinic receptor revealed by NMR spectroscopy. Mol. Cell 75, 1–15 (2019).
doi: 10.1016/j.molcel.2019.04.028
Wingler, L. M. et al. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176, 468–478 (2019).
pubmed: 30639099 pmcid: 6475118 doi: 10.1016/j.cell.2018.12.005
Mahalingam, M., Martínez-Mayorga, K., Brown, M. & Vogel, R. Two protonation switches control rhodopsin activation in membranes. Proc. Natl Acad. Sci. USA 105, 17795–17800 (2008).
pubmed: 18997017 pmcid: 2584695 doi: 10.1073/pnas.0804541105
Zaitseva, E., Brown, M. F. & Vogel, R. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: The Meta IIa conformational substate. J. Am. Chem. Soc. 132, 4815–4821 (2010).
pubmed: 20230054 pmcid: 2859452 doi: 10.1021/ja910317a
Furutani, Y., Shichida, Y. & Kandori, H. Sturctural changes of water molecules during the photoactivation processes in bovine rhodopsin. Biochemistry 42, 9619–9625 (2003).
pubmed: 12911303 doi: 10.1021/bi034592k
Kumar, S. & Barth, A. Following enzyme activity with infrared spectroscopy. Sensors 10, 2626–2637 (2010).
pubmed: 22319264 pmcid: 3274194 doi: 10.3390/s100402626
Iwaki, M., Cotton, N. P. J., Quirk, P. G., Rich, P. R. & Baz Jackson, J. Molecular recognition between protein and nicotinamide dinucleotide in intact, proton-translocating transhydrogenase studied by ATR-FTIR spectroscopy. J. Am. Chem. Soc. 128, 2621–2629 (2006).
pubmed: 16492047 doi: 10.1021/ja0556272
Kitade, Y., Furutani, Y., Kamo, N. & Kandori, H. Proton release group of pharaonic phoborhodopsin revealed by ATR-FTIR spectroscopy. Biochemistry 48, 1595–1603 (2009).
pubmed: 19178155 doi: 10.1021/bi801984u
Jiang, X. et al. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Proc. Natl Acad. Sci. USA 105, 12113–12117 (2008).
pubmed: 18719097 pmcid: 2527874 doi: 10.1073/pnas.0802289105
Doki, S. et al. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc. Natl. Acad. Sci. USA 110, 11343–11348 (2013).
Furutani, Y., Murata, T. & Kandori, H. Sodium or lithium ion-binding-induced structural changes in the K-ring of V-ATPase from Enterococcus hirae revealed by ATR-FTIR spectroscopy. J. Am. Chem. Soc. 133, 2860–2863 (2011).
pubmed: 21319823 doi: 10.1021/ja1116414
Katayama, K. et al. “In situ” observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy. Phys. Chem. Chem. Phys. 20, 3381–3387 (2018).
pubmed: 29297909 doi: 10.1039/C7CP07277E
Katayama, K., Nakamura, S., Sasaki, T., Imai, H. & Kandori, H. Role of Gln114 in spectral tuning of a long-wavelength sensitive visual pigment. Biochemistry 58, 2944–2952 (2019).
pubmed: 31144811 doi: 10.1021/acs.biochem.9b00340
Katayama, K. et al. Ligand binding-induced structural changes in the M
pubmed: 31692352 doi: 10.1021/acs.jpclett.9b02942
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relationships in G protein-coupled receptors. Methods Neurosci. 25, 336–428 (1995).
Langmead, C. J. & Christopoulos, A. Supra-physiological efficacy at GPCRs: superstition or super agonists? Br. J. Pharmacol. 169, 353–356 (2013).
pubmed: 23441648 pmcid: 3651661 doi: 10.1111/bph.12142
Heitz, F. et al. Site-directed mutagenesis of the putative human muscarinic M
pubmed: 10513578 doi: 10.1016/S0014-2999(99)00439-2
Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947 (2019).
pubmed: 31160049 pmcid: 6773469 doi: 10.1016/j.cell.2019.04.044
Goormaghtign, E., Cabiaux, V. & Ruysschaert, J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. Subcell. Biochem. 23, 405–450 (1994).
doi: 10.1007/978-1-4615-1863-1_10
Suzuki, K. et al. Vibrational analysis of acetylcholine binding to the M
pubmed: 35423811 pmcid: 8696876 doi: 10.1039/D1RA01030A
Cheng, K. et al. Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J. Pharmacol. Exp. Ther. 303, 29–35 (2002).
pubmed: 12235229 doi: 10.1124/jpet.102.036376
Kashihara, K., Varga, E. V., Waite, S. L., Roeske, W. R. & Yamamura, H. I. Cloning of the rat m3, m4 and m5 muscarinic acetylcholine receptor genes by the Polymerase Chain Reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci. 51, 955–971 (1992).
pubmed: 1325587 doi: 10.1016/0024-3205(92)90403-C
Kovacs, I., Yamamura, H. I., Waite, S. L., Varga, E. V. & Roeske, W. R. Pharmacological comparison of the cloned human and rat M
pubmed: 9454790
Shannon, H. E. et al. Xanomeline: a novel muscarinic receptor agonist with functional selectivity for M
pubmed: 7909557
Jakubík, J., El-Fakahany, E. E. & Dolezal, V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M
pubmed: 16675658 doi: 10.1124/mol.106.023762
Maeda, S. et al. Structure and selectivity engineering of the M
pubmed: 32646996 pmcid: 7954660 doi: 10.1126/science.aax2517
Thal, D. M. et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016).
pubmed: 26958838 pmcid: 4915387 doi: 10.1038/nature17188
Yin, W. et al. Crystal structure of the human 5-HT
doi: 10.1038/s41421-018-0009-2
Katayama, K. et al. Vibrational spectroscopy analysis of ligand efficacy in human M2 muscarinic acetylcholine receptor (M2R).xlsx. figshare. Dataset. https://doi.org/10.6084/m9.figshare.16608511.v1 (2021).

Auteurs

Kota Katayama (K)

Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan. Katayama.kota@nitech.ac.jp.
OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan. Katayama.kota@nitech.ac.jp.
PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. Katayama.kota@nitech.ac.jp.

Kohei Suzuki (K)

Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.

Ryoji Suno (R)

Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan.

Ryoji Kise (R)

Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.

Hirokazu Tsujimoto (H)

Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.

So Iwata (S)

Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.

Asuka Inoue (A)

Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.

Takuya Kobayashi (T)

Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan.
Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, 100-0004, Japan.

Hideki Kandori (H)

Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan. kandori@nitech.ac.jp.
OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan. kandori@nitech.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH