Trpm5 channels encode bistability of spinal motoneurons and ensure motor control of hindlimbs in mice.
Action Potentials
/ drug effects
Animals
Animals, Newborn
Computer Simulation
Disease Models, Animal
Female
Gene Silencing
HEK293 Cells
Hindlimb
/ physiology
Humans
Locomotion
/ drug effects
Male
Mice
Motor Neurons
/ drug effects
Paresis
/ genetics
Patch-Clamp Techniques
Recombinant Proteins
/ genetics
Ryanodine
/ metabolism
Sarcoplasmic Reticulum Calcium-Transporting ATPases
/ antagonists & inhibitors
Spinal Cord
/ cytology
TRPM Cation Channels
/ antagonists & inhibitors
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 11 2021
24 11 2021
Historique:
received:
07
02
2021
accepted:
02
11
2021
entrez:
25
11
2021
pubmed:
26
11
2021
medline:
24
12
2021
Statut:
epublish
Résumé
Bistable motoneurons of the spinal cord exhibit warmth-activated plateau potential driven by Na
Identifiants
pubmed: 34819493
doi: 10.1038/s41467-021-27113-x
pii: 10.1038/s41467-021-27113-x
pmc: PMC8613399
doi:
Substances chimiques
Recombinant Proteins
0
TRPM Cation Channels
0
Trpm5 protein, mouse
0
Ryanodine
15662-33-6
Sarcoplasmic Reticulum Calcium-Transporting ATPases
EC 3.6.3.8
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6815Informations de copyright
© 2021. The Author(s).
Références
Bos, R. et al. Kv1.2 channels promote nonlinear spiking motoneurons for powering up locomotion. Cell Rep. 22, 3315–3327 (2018).
pubmed: 29562186
pmcid: 5907934
doi: 10.1016/j.celrep.2018.02.093
Kiehn, O. Plateau potentials and active integration in the ‘final common pathway’ for motor behaviour. Trends Neurosci. 14, 68–73 (1991).
pubmed: 1708539
doi: 10.1016/0166-2236(91)90023-N
Hultborn, H. Plateau potentials and their role in regulating motoneuronal firing. Prog. Brain Res. 123, 39–48 (1999).
pubmed: 10635702
doi: 10.1016/S0079-6123(08)62842-3
Brownstone, R. M., Gossard, J. P. & Hultborn, H. Voltage-dependent excitation of motoneurones from spinal locomotor centres in the cat. Exp. Brain Res. 102, 34–44 (1994).
pubmed: 7895797
doi: 10.1007/BF00232436
Hultborn, H., Brownstone, R. B., Toth, T. I. & Gossard, J. P. Key mechanisms for setting the input-output gain across the motoneuron pool. Prog. Brain Res. 143, 77–95 (2004).
pubmed: 14653153
Binder, M. D., Powers, R. K. & Heckman, C. J. Nonlinear input-output functions of motoneurons. Physiology 35, 31–39 (2020).
pubmed: 31799904
doi: 10.1152/physiol.00026.2019
Schwindt, P. C. & Crill, W. E. Properties of a persistent inward current in normal and TEA-injected motoneurons. J. Neurophysiol. 43, 1700–1724 (1980).
pubmed: 6251180
doi: 10.1152/jn.1980.43.6.1700
Hounsgaard, J., Hultborn, H., Jespersen, B. & Kiehn, O. Intrinsic membrane properties causing a bistable behaviour of alpha-motoneurones. Exp. Brain Res. 55, 391–394 (1984).
pubmed: 6086378
doi: 10.1007/BF00237290
Hounsgaard, J. & Mintz, I. Calcium conductance and firing properties of spinal motoneurones in the turtle. J. Physiol. 398, 591–603 (1988).
pubmed: 2455804
pmcid: 1191789
doi: 10.1113/jphysiol.1988.sp017059
Lee, R. H. & Heckman, C. J. Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J. Neurophysiol. 80, 583–593 (1998).
pubmed: 9705452
doi: 10.1152/jn.1998.80.2.583
Hultborn, H., Zhang, M. & Meehan, C. F. Control and role of plateau potential properties in the spinal cord. Curr. Pharm. Des. 19, 4357–4370 (2013).
pubmed: 23360269
doi: 10.2174/1381612811319240004
Bouhadfane, M., Tazerart, S., Moqrich, A., Vinay, L. & Brocard, F. Sodium-mediated plateau potentials in lumbar motoneurons of neonatal rats. J. Neurosci. 33, 15626–15641 (2013).
pubmed: 24068829
pmcid: 6618457
doi: 10.1523/JNEUROSCI.1483-13.2013
Conway, B. A., Hultborn, H., Kiehn, O. & Mintz, I. Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal cat. J. Physiol. 405, 369–384 (1988).
pubmed: 3255795
pmcid: 1190980
doi: 10.1113/jphysiol.1988.sp017337
Hounsgaard, J. & Kiehn, O. Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J. Physiol. 414, 265–282 (1989).
pubmed: 2607432
pmcid: 1189141
doi: 10.1113/jphysiol.1989.sp017687
Hounsgaard, J., Hultborn, H., Jespersen, B. & Kiehn, O. Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J. Physiol. 405, 345–367 (1988).
pubmed: 3267153
pmcid: 1190979
doi: 10.1113/jphysiol.1988.sp017336
Perrier, J. F. & Hounsgaard, J. 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current. J. Neurophysiol. 89, 954–959 (2003).
pubmed: 12574471
doi: 10.1152/jn.00753.2002
Murray, K. C. et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 16, 694–700 (2010).
pubmed: 20512126
pmcid: 3107820
doi: 10.1038/nm.2160
Brocard, C. et al. Cleavage of Na(+) channels by calpain increases persistent Na(+) current and promotes spasticity after spinal cord injury. Nat. Med. 22, 404–411 (2016).
pubmed: 26974309
doi: 10.1038/nm.4061
Eken, T. & Kiehn, O. Bistable firing properties of soleus motor units in unrestrained rats. Acta Physiol. Scand. 136, 383–394 (1989).
pubmed: 2750539
doi: 10.1111/j.1748-1716.1989.tb08679.x
Gorassini, M., Bennett, D. J., Kiehn, O., Eken, T. & Hultborn, H. Activation patterns of hindlimb motor units in the awake rat and their relation to motoneuron intrinsic properties. J. Neurophysiol. 82, 709–717 (1999).
pubmed: 10444668
doi: 10.1152/jn.1999.82.2.709
Eken, T., Elder, G. C. & Lomo, T. Development of tonic firing behavior in rat soleus muscle. J. Neurophysiol. 99, 1899–1905 (2008).
pubmed: 18256168
doi: 10.1152/jn.00834.2007
Kiehn, O. & Eken, T. Prolonged firing in motor units: evidence of plateau potentials in human motoneurons? J. Neurophysiol. 78, 3061–3068 (1997).
pubmed: 9405525
doi: 10.1152/jn.1997.78.6.3061
Collins, D. F., Burke, D. & Gandevia, S. C. Sustained contractions produced by plateau-like behaviour in human motoneurones. J. Physiol. 538, 289–301 (2002).
pubmed: 11773336
pmcid: 2290016
doi: 10.1113/jphysiol.2001.012825
Gorassini, M., Yang, J. F., Siu, M. & Bennett, D. J. Intrinsic activation of human motoneurons: reduction of motor unit recruitment thresholds by repeated contractions. J. Neurophysiol. 87, 1859–1866 (2002).
pubmed: 11929907
doi: 10.1152/jn.00025.2001
Nickolls, P., Collins, D. F., Gorman, R. B., Burke, D. & Gandevia, S. C. Forces consistent with plateau-like behaviour of spinal neurons evoked in patients with spinal cord injuries. Brain 127, 660–670 (2004).
pubmed: 14749290
doi: 10.1093/brain/awh073
Eken, T., Hultborn, H. & Kiehn, O. Possible functions of transmitter-controlled plateau potentials in alpha motoneurones. Prog. Brain Res. 80, 257–267 (1989).
pubmed: 2699366
doi: 10.1016/S0079-6123(08)62219-0
Kiehn, O. & Eken, T. Functional role of plateau potentials in vertebrate motor neurons. Curr. Opin. Neurobiol. 8, 746–752 (1998).
pubmed: 9914232
doi: 10.1016/S0959-4388(98)80117-7
Heckman, C. J., Johnson, M., Mottram, C. & Schuster, J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 14, 264–275 (2008).
pubmed: 18381974
pmcid: 3326417
doi: 10.1177/1073858408314986
Hounsgaard, J. & Kiehn, O. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. J. Physiol. 468, 245–259 (1993).
pubmed: 8254508
pmcid: 1143824
doi: 10.1113/jphysiol.1993.sp019769
Westenbroek, R. E., Hoskins, L. & Catterall, W. A. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci. 18, 6319–6330 (1998).
pubmed: 9698323
pmcid: 6793183
doi: 10.1523/JNEUROSCI.18-16-06319.1998
Carlin, K. P., Jones, K. E., Jiang, Z., Jordan, L. M. & Brownstone, R. M. Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability. Eur. J. Neurosci. 12, 1635–1646 (2000).
pubmed: 10792441
doi: 10.1046/j.1460-9568.2000.00055.x
Simon, M., Perrier, J. F. & Hounsgaard, J. Subcellular distribution of L-type Ca
pubmed: 12887407
doi: 10.1046/j.1460-9568.2003.02783.x
Brocard, F. New channel lineup in spinal circuits governing locomotion. Curr. Opin. Physiol. 8, 14–22 (2019).
doi: 10.1016/j.cophys.2018.11.009
Launay, P. et al. TRPM4 is a Ca
pubmed: 12015988
doi: 10.1016/S0092-8674(02)00719-5
Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).
pubmed: 16355226
doi: 10.1038/nature04248
Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr. Biol. 13, 1153–1158 (2003).
pubmed: 12842017
doi: 10.1016/S0960-9822(03)00431-7
Ullrich, N. D. et al. Comparison of functional properties of the Ca
pubmed: 15670874
doi: 10.1016/j.ceca.2004.11.001
Tominaga, M. in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades (eds Liedtke, W. B. & Heller, S.) Ch. 20 (CRC Press, 2007).
Grand, T. et al. 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br. J. Pharmacol. 153, 1697–1705 (2008).
pubmed: 18297105
pmcid: 2438271
doi: 10.1038/bjp.2008.38
Liu, P., Shah, B. P., Croasdell, S. & Gilbertson, T. A. Transient receptor potential channel type M5 is essential for fat taste. J. Neurosci. 31, 8634–8642 (2011).
pubmed: 21653867
pmcid: 3125678
doi: 10.1523/JNEUROSCI.6273-10.2011
Palmer, R. K. et al. Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay. Drug Dev. Technol. 8, 703–713 (2010).
pubmed: 21158685
doi: 10.1089/adt.2010.0334
Shigeto, M. et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Investig. 125, 4714–4728 (2015).
pubmed: 26571400
pmcid: 4665783
doi: 10.1172/JCI81975
Buntschu, S., Tscherter, A., Heidemann, M. & Streit, J. Critical components for spontaneous activity and rhythm generation in spinal cord circuits in culture. Front. Cell. Neurosci. 14, 81 (2020).
pubmed: 32410961
pmcid: 7198714
doi: 10.3389/fncel.2020.00081
Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).
pubmed: 23160238
doi: 10.1038/nm.3015
Simard, C., Salle, L., Rouet, R. & Guinamard, R. Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br. J. Pharmacol. 165, 2354–2364 (2012).
pubmed: 22014185
pmcid: 3413868
doi: 10.1111/j.1476-5381.2011.01715.x
Prawitt, D. et al. TRPM5 is a transient Ca
pubmed: 14634208
pmcid: 299937
doi: 10.1073/pnas.2334624100
Liu, D. & Liman, E. R. Intracellular Ca
pubmed: 14657398
pmcid: 299934
doi: 10.1073/pnas.2334159100
Ben-Mabrouk, F. & Tryba, A. K. Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity. Eur. J. Neurosci. 31, 1219–1232 (2010).
pubmed: 20345918
pmcid: 3036165
doi: 10.1111/j.1460-9568.2010.07156.x
Koizumi, H. et al. Transient receptor potential channels TRPM4 and TRPC3 critically contribute to respiratory motor pattern formation but not rhythmogenesis in rodent brainstem circuits. eNeuro 5, ENEURO.0332-17.2018 (2018).
Picardo, M. C. D. et al. Trpm4 ion channels in pre-Botzinger complex interneurons are essential for breathing motor pattern but not rhythm. PLoS Biol. 17, e2006094 (2019).
pubmed: 30789900
pmcid: 6400419
doi: 10.1371/journal.pbio.2006094
Yan, H. D., Villalobos, C. & Andrade, R. TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J. Neurosci. 29, 10038–10046 (2009).
pubmed: 19675237
pmcid: 2747319
doi: 10.1523/JNEUROSCI.1042-09.2009
Fowler, M. A., Sidiropoulou, K., Ozkan, E. D., Phillips, C. W. & Cooper, D. C. Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. PLoS ONE 2, e573 (2007).
pubmed: 17593972
pmcid: 1892805
doi: 10.1371/journal.pone.0000573
Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).
pubmed: 12368808
doi: 10.1038/nn952
Bouhadfane, M. et al. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin. Elife 4, e06195 (2015).
pubmed: 25781633
pmcid: 4410746
doi: 10.7554/eLife.06195
Walton, C., Kalmar, J. M. & Cafarelli, E. Effect of caffeine on self-sustained firing in human motor units. J. Physiol. 545, 671–679 (2002).
pubmed: 12456842
pmcid: 2290683
doi: 10.1113/jphysiol.2002.025064
Zhang, M. et al. Localization of L-type calcium channel Ca(V)1.3 in cat lumbar spinal cord–with emphasis on motoneurons. Neurosci. Lett. 407, 42–47 (2006).
pubmed: 16949207
doi: 10.1016/j.neulet.2006.07.073
Wang, D., Grillner, S. & Wallen, P. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord. Neuropharmacology 51, 1038–1046 (2006).
pubmed: 16919683
doi: 10.1016/j.neuropharm.2006.06.012
Del Negro, C. A. et al. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25, 446–453 (2005).
pubmed: 15647488
pmcid: 6725489
doi: 10.1523/JNEUROSCI.2237-04.2005
Thoby-Brisson, M. & Ramirez, J. M. Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J. Neurophysiol. 86, 104–112 (2001).
pubmed: 11431492
doi: 10.1152/jn.2001.86.1.104
Fowler, S. J. & Kellogg, C. Ontogeny of thermoregulatory mechanisms in the rat. J. Comp. Physiol. Psychol. 89, 738–746 (1975).
pubmed: 1176668
doi: 10.1037/h0077037
Choi, H. J., Sun, D. & Jakobs, T. C. Astrocytes in the optic nerve head express putative mechanosensitive channels. Mol. Vis. 21, 749–766 (2015).
pubmed: 26236150
pmcid: 4502055
Marics, I., Malapert, P., Reynders, A., Gaillard, S. & Moqrich, A. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels. PLoS ONE 9, e99828 (2014).
pubmed: 24925072
pmcid: 4055713
doi: 10.1371/journal.pone.0099828
Park, U. et al. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci. 31, 11425–11436 (2011).
pubmed: 21832173
pmcid: 3192449
doi: 10.1523/JNEUROSCI.1384-09.2011
Barbet, G. et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat. Immunol. 9, 1148–1156 (2008).
pubmed: 18758465
pmcid: 2956271
doi: 10.1038/ni.1648
Damak, S. et al. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem. Senses 31, 253–264 (2006).
pubmed: 16436689
doi: 10.1093/chemse/bjj027
Korogod, S. & Demianenko, L. E. Temperature deactivation of the depolarizing TRP current as a mechanism of hypothermia-related inhibition of neuronal activity: a model study. Neurophysiology 48, 324–331 (2016).
doi: 10.1007/s11062-017-9605-2
Voets, T. Quantifying and modeling the temperature-dependent gating of TRP channels. Rev. Physiol. Biochem. Pharmacol. 162, 91–119 (2012).
pubmed: 22298025
Zhang, Z., Zhao, Z., Margolskee, R. & Liman, E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27, 5777–5786 (2007).
pubmed: 17522321
pmcid: 6672777
doi: 10.1523/JNEUROSCI.4973-06.2007
Gerhardsson, L., Lundh, T., Minthon, L. & Londos, E. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 25, 508–515 (2008).
pubmed: 18463412
doi: 10.1159/000129365