Trpm5 channels encode bistability of spinal motoneurons and ensure motor control of hindlimbs in mice.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 11 2021
Historique:
received: 07 02 2021
accepted: 02 11 2021
entrez: 25 11 2021
pubmed: 26 11 2021
medline: 24 12 2021
Statut: epublish

Résumé

Bistable motoneurons of the spinal cord exhibit warmth-activated plateau potential driven by Na

Identifiants

pubmed: 34819493
doi: 10.1038/s41467-021-27113-x
pii: 10.1038/s41467-021-27113-x
pmc: PMC8613399
doi:

Substances chimiques

Recombinant Proteins 0
TRPM Cation Channels 0
Trpm5 protein, mouse 0
Ryanodine 15662-33-6
Sarcoplasmic Reticulum Calcium-Transporting ATPases EC 3.6.3.8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6815

Informations de copyright

© 2021. The Author(s).

Références

Bos, R. et al. Kv1.2 channels promote nonlinear spiking motoneurons for powering up locomotion. Cell Rep. 22, 3315–3327 (2018).
pubmed: 29562186 pmcid: 5907934 doi: 10.1016/j.celrep.2018.02.093
Kiehn, O. Plateau potentials and active integration in the ‘final common pathway’ for motor behaviour. Trends Neurosci. 14, 68–73 (1991).
pubmed: 1708539 doi: 10.1016/0166-2236(91)90023-N
Hultborn, H. Plateau potentials and their role in regulating motoneuronal firing. Prog. Brain Res. 123, 39–48 (1999).
pubmed: 10635702 doi: 10.1016/S0079-6123(08)62842-3
Brownstone, R. M., Gossard, J. P. & Hultborn, H. Voltage-dependent excitation of motoneurones from spinal locomotor centres in the cat. Exp. Brain Res. 102, 34–44 (1994).
pubmed: 7895797 doi: 10.1007/BF00232436
Hultborn, H., Brownstone, R. B., Toth, T. I. & Gossard, J. P. Key mechanisms for setting the input-output gain across the motoneuron pool. Prog. Brain Res. 143, 77–95 (2004).
pubmed: 14653153
Binder, M. D., Powers, R. K. & Heckman, C. J. Nonlinear input-output functions of motoneurons. Physiology 35, 31–39 (2020).
pubmed: 31799904 doi: 10.1152/physiol.00026.2019
Schwindt, P. C. & Crill, W. E. Properties of a persistent inward current in normal and TEA-injected motoneurons. J. Neurophysiol. 43, 1700–1724 (1980).
pubmed: 6251180 doi: 10.1152/jn.1980.43.6.1700
Hounsgaard, J., Hultborn, H., Jespersen, B. & Kiehn, O. Intrinsic membrane properties causing a bistable behaviour of alpha-motoneurones. Exp. Brain Res. 55, 391–394 (1984).
pubmed: 6086378 doi: 10.1007/BF00237290
Hounsgaard, J. & Mintz, I. Calcium conductance and firing properties of spinal motoneurones in the turtle. J. Physiol. 398, 591–603 (1988).
pubmed: 2455804 pmcid: 1191789 doi: 10.1113/jphysiol.1988.sp017059
Lee, R. H. & Heckman, C. J. Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J. Neurophysiol. 80, 583–593 (1998).
pubmed: 9705452 doi: 10.1152/jn.1998.80.2.583
Hultborn, H., Zhang, M. & Meehan, C. F. Control and role of plateau potential properties in the spinal cord. Curr. Pharm. Des. 19, 4357–4370 (2013).
pubmed: 23360269 doi: 10.2174/1381612811319240004
Bouhadfane, M., Tazerart, S., Moqrich, A., Vinay, L. & Brocard, F. Sodium-mediated plateau potentials in lumbar motoneurons of neonatal rats. J. Neurosci. 33, 15626–15641 (2013).
pubmed: 24068829 pmcid: 6618457 doi: 10.1523/JNEUROSCI.1483-13.2013
Conway, B. A., Hultborn, H., Kiehn, O. & Mintz, I. Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal cat. J. Physiol. 405, 369–384 (1988).
pubmed: 3255795 pmcid: 1190980 doi: 10.1113/jphysiol.1988.sp017337
Hounsgaard, J. & Kiehn, O. Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J. Physiol. 414, 265–282 (1989).
pubmed: 2607432 pmcid: 1189141 doi: 10.1113/jphysiol.1989.sp017687
Hounsgaard, J., Hultborn, H., Jespersen, B. & Kiehn, O. Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J. Physiol. 405, 345–367 (1988).
pubmed: 3267153 pmcid: 1190979 doi: 10.1113/jphysiol.1988.sp017336
Perrier, J. F. & Hounsgaard, J. 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current. J. Neurophysiol. 89, 954–959 (2003).
pubmed: 12574471 doi: 10.1152/jn.00753.2002
Murray, K. C. et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 16, 694–700 (2010).
pubmed: 20512126 pmcid: 3107820 doi: 10.1038/nm.2160
Brocard, C. et al. Cleavage of Na(+) channels by calpain increases persistent Na(+) current and promotes spasticity after spinal cord injury. Nat. Med. 22, 404–411 (2016).
pubmed: 26974309 doi: 10.1038/nm.4061
Eken, T. & Kiehn, O. Bistable firing properties of soleus motor units in unrestrained rats. Acta Physiol. Scand. 136, 383–394 (1989).
pubmed: 2750539 doi: 10.1111/j.1748-1716.1989.tb08679.x
Gorassini, M., Bennett, D. J., Kiehn, O., Eken, T. & Hultborn, H. Activation patterns of hindlimb motor units in the awake rat and their relation to motoneuron intrinsic properties. J. Neurophysiol. 82, 709–717 (1999).
pubmed: 10444668 doi: 10.1152/jn.1999.82.2.709
Eken, T., Elder, G. C. & Lomo, T. Development of tonic firing behavior in rat soleus muscle. J. Neurophysiol. 99, 1899–1905 (2008).
pubmed: 18256168 doi: 10.1152/jn.00834.2007
Kiehn, O. & Eken, T. Prolonged firing in motor units: evidence of plateau potentials in human motoneurons? J. Neurophysiol. 78, 3061–3068 (1997).
pubmed: 9405525 doi: 10.1152/jn.1997.78.6.3061
Collins, D. F., Burke, D. & Gandevia, S. C. Sustained contractions produced by plateau-like behaviour in human motoneurones. J. Physiol. 538, 289–301 (2002).
pubmed: 11773336 pmcid: 2290016 doi: 10.1113/jphysiol.2001.012825
Gorassini, M., Yang, J. F., Siu, M. & Bennett, D. J. Intrinsic activation of human motoneurons: reduction of motor unit recruitment thresholds by repeated contractions. J. Neurophysiol. 87, 1859–1866 (2002).
pubmed: 11929907 doi: 10.1152/jn.00025.2001
Nickolls, P., Collins, D. F., Gorman, R. B., Burke, D. & Gandevia, S. C. Forces consistent with plateau-like behaviour of spinal neurons evoked in patients with spinal cord injuries. Brain 127, 660–670 (2004).
pubmed: 14749290 doi: 10.1093/brain/awh073
Eken, T., Hultborn, H. & Kiehn, O. Possible functions of transmitter-controlled plateau potentials in alpha motoneurones. Prog. Brain Res. 80, 257–267 (1989).
pubmed: 2699366 doi: 10.1016/S0079-6123(08)62219-0
Kiehn, O. & Eken, T. Functional role of plateau potentials in vertebrate motor neurons. Curr. Opin. Neurobiol. 8, 746–752 (1998).
pubmed: 9914232 doi: 10.1016/S0959-4388(98)80117-7
Heckman, C. J., Johnson, M., Mottram, C. & Schuster, J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 14, 264–275 (2008).
pubmed: 18381974 pmcid: 3326417 doi: 10.1177/1073858408314986
Hounsgaard, J. & Kiehn, O. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. J. Physiol. 468, 245–259 (1993).
pubmed: 8254508 pmcid: 1143824 doi: 10.1113/jphysiol.1993.sp019769
Westenbroek, R. E., Hoskins, L. & Catterall, W. A. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci. 18, 6319–6330 (1998).
pubmed: 9698323 pmcid: 6793183 doi: 10.1523/JNEUROSCI.18-16-06319.1998
Carlin, K. P., Jones, K. E., Jiang, Z., Jordan, L. M. & Brownstone, R. M. Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability. Eur. J. Neurosci. 12, 1635–1646 (2000).
pubmed: 10792441 doi: 10.1046/j.1460-9568.2000.00055.x
Simon, M., Perrier, J. F. & Hounsgaard, J. Subcellular distribution of L-type Ca
pubmed: 12887407 doi: 10.1046/j.1460-9568.2003.02783.x
Brocard, F. New channel lineup in spinal circuits governing locomotion. Curr. Opin. Physiol. 8, 14–22 (2019).
doi: 10.1016/j.cophys.2018.11.009
Launay, P. et al. TRPM4 is a Ca
pubmed: 12015988 doi: 10.1016/S0092-8674(02)00719-5
Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).
pubmed: 16355226 doi: 10.1038/nature04248
Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr. Biol. 13, 1153–1158 (2003).
pubmed: 12842017 doi: 10.1016/S0960-9822(03)00431-7
Ullrich, N. D. et al. Comparison of functional properties of the Ca
pubmed: 15670874 doi: 10.1016/j.ceca.2004.11.001
Tominaga, M. in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades (eds Liedtke, W. B. & Heller, S.) Ch. 20 (CRC Press, 2007).
Grand, T. et al. 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br. J. Pharmacol. 153, 1697–1705 (2008).
pubmed: 18297105 pmcid: 2438271 doi: 10.1038/bjp.2008.38
Liu, P., Shah, B. P., Croasdell, S. & Gilbertson, T. A. Transient receptor potential channel type M5 is essential for fat taste. J. Neurosci. 31, 8634–8642 (2011).
pubmed: 21653867 pmcid: 3125678 doi: 10.1523/JNEUROSCI.6273-10.2011
Palmer, R. K. et al. Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay. Drug Dev. Technol. 8, 703–713 (2010).
pubmed: 21158685 doi: 10.1089/adt.2010.0334
Shigeto, M. et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Investig. 125, 4714–4728 (2015).
pubmed: 26571400 pmcid: 4665783 doi: 10.1172/JCI81975
Buntschu, S., Tscherter, A., Heidemann, M. & Streit, J. Critical components for spontaneous activity and rhythm generation in spinal cord circuits in culture. Front. Cell. Neurosci. 14, 81 (2020).
pubmed: 32410961 pmcid: 7198714 doi: 10.3389/fncel.2020.00081
Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).
pubmed: 23160238 doi: 10.1038/nm.3015
Simard, C., Salle, L., Rouet, R. & Guinamard, R. Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br. J. Pharmacol. 165, 2354–2364 (2012).
pubmed: 22014185 pmcid: 3413868 doi: 10.1111/j.1476-5381.2011.01715.x
Prawitt, D. et al. TRPM5 is a transient Ca
pubmed: 14634208 pmcid: 299937 doi: 10.1073/pnas.2334624100
Liu, D. & Liman, E. R. Intracellular Ca
pubmed: 14657398 pmcid: 299934 doi: 10.1073/pnas.2334159100
Ben-Mabrouk, F. & Tryba, A. K. Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity. Eur. J. Neurosci. 31, 1219–1232 (2010).
pubmed: 20345918 pmcid: 3036165 doi: 10.1111/j.1460-9568.2010.07156.x
Koizumi, H. et al. Transient receptor potential channels TRPM4 and TRPC3 critically contribute to respiratory motor pattern formation but not rhythmogenesis in rodent brainstem circuits. eNeuro 5, ENEURO.0332-17.2018 (2018).
Picardo, M. C. D. et al. Trpm4 ion channels in pre-Botzinger complex interneurons are essential for breathing motor pattern but not rhythm. PLoS Biol. 17, e2006094 (2019).
pubmed: 30789900 pmcid: 6400419 doi: 10.1371/journal.pbio.2006094
Yan, H. D., Villalobos, C. & Andrade, R. TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J. Neurosci. 29, 10038–10046 (2009).
pubmed: 19675237 pmcid: 2747319 doi: 10.1523/JNEUROSCI.1042-09.2009
Fowler, M. A., Sidiropoulou, K., Ozkan, E. D., Phillips, C. W. & Cooper, D. C. Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. PLoS ONE 2, e573 (2007).
pubmed: 17593972 pmcid: 1892805 doi: 10.1371/journal.pone.0000573
Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).
pubmed: 12368808 doi: 10.1038/nn952
Bouhadfane, M. et al. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin. Elife 4, e06195 (2015).
pubmed: 25781633 pmcid: 4410746 doi: 10.7554/eLife.06195
Walton, C., Kalmar, J. M. & Cafarelli, E. Effect of caffeine on self-sustained firing in human motor units. J. Physiol. 545, 671–679 (2002).
pubmed: 12456842 pmcid: 2290683 doi: 10.1113/jphysiol.2002.025064
Zhang, M. et al. Localization of L-type calcium channel Ca(V)1.3 in cat lumbar spinal cord–with emphasis on motoneurons. Neurosci. Lett. 407, 42–47 (2006).
pubmed: 16949207 doi: 10.1016/j.neulet.2006.07.073
Wang, D., Grillner, S. & Wallen, P. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord. Neuropharmacology 51, 1038–1046 (2006).
pubmed: 16919683 doi: 10.1016/j.neuropharm.2006.06.012
Del Negro, C. A. et al. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25, 446–453 (2005).
pubmed: 15647488 pmcid: 6725489 doi: 10.1523/JNEUROSCI.2237-04.2005
Thoby-Brisson, M. & Ramirez, J. M. Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J. Neurophysiol. 86, 104–112 (2001).
pubmed: 11431492 doi: 10.1152/jn.2001.86.1.104
Fowler, S. J. & Kellogg, C. Ontogeny of thermoregulatory mechanisms in the rat. J. Comp. Physiol. Psychol. 89, 738–746 (1975).
pubmed: 1176668 doi: 10.1037/h0077037
Choi, H. J., Sun, D. & Jakobs, T. C. Astrocytes in the optic nerve head express putative mechanosensitive channels. Mol. Vis. 21, 749–766 (2015).
pubmed: 26236150 pmcid: 4502055
Marics, I., Malapert, P., Reynders, A., Gaillard, S. & Moqrich, A. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels. PLoS ONE 9, e99828 (2014).
pubmed: 24925072 pmcid: 4055713 doi: 10.1371/journal.pone.0099828
Park, U. et al. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci. 31, 11425–11436 (2011).
pubmed: 21832173 pmcid: 3192449 doi: 10.1523/JNEUROSCI.1384-09.2011
Barbet, G. et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat. Immunol. 9, 1148–1156 (2008).
pubmed: 18758465 pmcid: 2956271 doi: 10.1038/ni.1648
Damak, S. et al. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem. Senses 31, 253–264 (2006).
pubmed: 16436689 doi: 10.1093/chemse/bjj027
Korogod, S. & Demianenko, L. E. Temperature deactivation of the depolarizing TRP current as a mechanism of hypothermia-related inhibition of neuronal activity: a model study. Neurophysiology 48, 324–331 (2016).
doi: 10.1007/s11062-017-9605-2
Voets, T. Quantifying and modeling the temperature-dependent gating of TRP channels. Rev. Physiol. Biochem. Pharmacol. 162, 91–119 (2012).
pubmed: 22298025
Zhang, Z., Zhao, Z., Margolskee, R. & Liman, E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27, 5777–5786 (2007).
pubmed: 17522321 pmcid: 6672777 doi: 10.1523/JNEUROSCI.4973-06.2007
Gerhardsson, L., Lundh, T., Minthon, L. & Londos, E. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 25, 508–515 (2008).
pubmed: 18463412 doi: 10.1159/000129365

Auteurs

Rémi Bos (R)

Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France. remi.bos@univ-amu.fr.

Benoît Drouillas (B)

Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France.

Mouloud Bouhadfane (M)

Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France.

Emilie Pecchi (E)

Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France.

Virginie Trouplin (V)

Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France.

Sergiy M Korogod (SM)

Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Frédéric Brocard (F)

Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France. frederic.brocard@univ-amu.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH