Connectivity modulations induced by reach&grasp movements: a multidimensional approach.
Adult
Biomechanical Phenomena
Brain
/ physiology
Brain Mapping
Electroencephalography
/ methods
Female
Hand Strength
/ physiology
Humans
Insular Cortex
Male
Middle Aged
Models, Neurological
Motor Cortex
/ physiology
Movement
/ physiology
Neural Pathways
Neurosciences
/ methods
Parietal Lobe
Psychomotor Performance
/ physiology
Reproducibility of Results
Software
Somatosensory Cortex
/ physiology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 11 2021
29 11 2021
Historique:
received:
18
05
2021
accepted:
08
11
2021
entrez:
30
11
2021
pubmed:
1
12
2021
medline:
27
1
2022
Statut:
epublish
Résumé
Reach&grasp requires highly coordinated activation of different brain areas. We investigated whether reach&grasp kinematics is associated to EEG-based networks changes. We enrolled 10 healthy subjects. We analyzed the reach&grasp kinematics of 15 reach&grasp movements performed with each upper limb. Simultaneously, we obtained a 64-channel EEG, synchronized with the reach&grasp movement time points. We elaborated EEG signals with EEGLAB 12 in order to obtain event related synchronization/desynchronization (ERS/ERD) and lagged linear coherence between Brodmann areas. Finally, we evaluated network topology via sLORETA software, measuring network local and global efficiency (clustering and path length) and the overall balance (small-worldness). We observed a widespread ERD in α and β bands during reach&grasp, especially in the centro-parietal regions of the hemisphere contralateral to the movement. Regarding functional connectivity, we observed an α lagged linear coherence reduction among Brodmann areas contralateral to the arm involved in the reach&grasp movement. Interestingly, left arm movement determined widespread changes of α lagged linear coherence, specifically among right occipital regions, insular cortex and somatosensory cortex, while the right arm movement exerted a restricted contralateral sensory-motor cortex modulation. Finally, no change between rest and movement was found for clustering, path length and small-worldness. Through a synchronized acquisition, we explored the cortical correlates of the reach&grasp movement. Despite EEG perturbations, suggesting that the non-dominant reach&grasp network has a complex architecture probably linked to the necessity of a higher visual control, the pivotal topological measures of network local and global efficiency remained unaffected.
Identifiants
pubmed: 34845265
doi: 10.1038/s41598-021-02458-x
pii: 10.1038/s41598-021-02458-x
pmc: PMC8630117
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23097Informations de copyright
© 2021. The Author(s).
Références
Fattori, P., Breveglieri, R., Amoroso, K. & Galletti, C. Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque. Eur. J. Neurosci. 20, 2457–2466 (2004).
pubmed: 15525286
doi: 10.1111/j.1460-9568.2004.03697.x
Grafton, S. T. The cognitive neuroscience of prehension: Recent developments. Exp. Brain Res. 204, 475–491 (2010).
pubmed: 20532487
pmcid: 2903689
doi: 10.1007/s00221-010-2315-2
Kaas, J. H., Gharbawie, O. A. & Stepniewska, I. Cortical networks for ethologically relevant behaviors in primates. Am. J. Primatol. 75, 407–414 (2013).
pubmed: 22865408
doi: 10.1002/ajp.22065
Caliandro, P. et al. Small-world characteristics of cortical connectivity changes in acute stroke. Neurorehabil. Neural Repair 31, 81–94 (2017).
pubmed: 27511048
doi: 10.1177/1545968316662525
Vecchio, F. et al. Acute cerebellar stroke and middle cerebral artery stroke exert distinctive modifications on functional cortical connectivity: A comparative study via EEG graph theory. Clin. Neurophysiol. 130, 997–1007 (2019).
pubmed: 31005052
doi: 10.1016/j.clinph.2019.03.017
Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).
pubmed: 23245604
doi: 10.1016/S0140-6736(12)61728-0
Feigin, V. L. et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 383, 245–255 (2014).
pubmed: 24449944
pmcid: 4181600
doi: 10.1016/S0140-6736(13)61953-4
Dubovik, S. et al. The behavioral significance of coherent resting-state oscillations after stroke. Neuroimage 61, 249–257 (2012).
pubmed: 22440653
doi: 10.1016/j.neuroimage.2012.03.024
Wang, L. et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 133, 1224–1238 (2010).
pubmed: 20354002
doi: 10.1093/brain/awq043
Jeannerod, M. The Neural and Behavioural Organization of Goal-Directed Movements (Clarendon Press/Oxford University Press, 1988).
Karl, J. M. & Whishaw, I. Q. Different evolutionary origins for the Reach and the Grasp: An explanation for dual visuomotor channels in primate parietofrontal cortex. Front. Neurol. 4, 208 (2013).
pubmed: 24391626
pmcid: 3870330
doi: 10.3389/fneur.2013.00208
Fagg, A. H. & Arbib, M. A. Modeling parietal-premotor interactions in primate control of grasping. Neural Netw. 11, 1277–1303 (1998).
pubmed: 12662750
doi: 10.1016/S0893-6080(98)00047-1
Borra, E. et al. Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb. Cortex 18, 1094–1111 (2008).
pubmed: 17720686
doi: 10.1093/cercor/bhm146
Dea, M., Hamadjida, A., Elgbeili, G., Quessy, S. & Dancause, N. Different patterns of cortical inputs to subregions of the primary motor cortex hand representation in Cebus apella. Cereb. Cortex 26, 1747–1761 (2016).
pubmed: 26966266
pmcid: 4785954
doi: 10.1093/cercor/bhv324
Stark, E., Asher, I. & Abeles, M. Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site. J. Neurophysiol. 97, 3351–3364 (2007).
pubmed: 17360824
doi: 10.1152/jn.01328.2006
Lehmann, S. J. & Scherberger, H. Reach and gaze representations in macaque parietal and premotor grasp areas. J. Neurosci. 33, 7038–7049 (2013).
pubmed: 23595761
pmcid: 6618884
doi: 10.1523/JNEUROSCI.5568-12.2013
C, B. et al. An investigation of the neural circuits underlying reaching and reach-to-grasp movements: From planning to execution. Front. Hum. Neurosci. 8, 676 (2014).
Hsu, C. C. et al. Study of repetitive movements induced oscillatory activities in healthy subjects and chronic stroke patients. Sci. Rep. 6, 39046 (2016).
pubmed: 27976723
pmcid: 5157038
doi: 10.1038/srep39046
Nakayashiki, K., Saeki, M., Takata, Y., Hayashi, Y. & Kondo, T. Modulation of event-related desynchronization during kinematic and kinetic hand movements. J. Neuroeng. Rehabil. 11, 90 (2014).
pubmed: 24886610
pmcid: 4077682
doi: 10.1186/1743-0003-11-90
Formaggio, E. et al. Modulation of event-related desynchronization in robot-assisted hand performance: Brain oscillatory changes in active, passive and imagined movements. J. Neuroeng. Rehabil. 10, 24 (2013).
pubmed: 23442349
pmcid: 3598512
doi: 10.1186/1743-0003-10-24
Storti, S. F., Formaggio, E., Manganotti, P. & Menegaz, G. Brain network connectivity and topological analysis during voluntary arm movements. Clin. EEG Neurosci. 47, 276–290 (2016).
pubmed: 26251456
doi: 10.1177/1550059415598905
Faith, A., Chen, Y., Rikakis, T. & Iasemidis, L. Interactive rehabilitation and dynamical analysis of scalp EEG. in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011, 1387–1390 (Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011).
Puxeddu, M. G. et al. The modular organization of brain cortical connectivity across the human lifespan. Neuroimage 218, 116974 (2020).
pubmed: 32450249
doi: 10.1016/j.neuroimage.2020.116974
Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010).
pubmed: 19819337
doi: 10.1016/j.neuroimage.2009.10.003
Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15, 247–262 (2013).
pubmed: 24174898
pmcid: 3811098
doi: 10.31887/DCNS.2013.15.3/osporns
Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, 0805–0815 (2006).
doi: 10.1371/journal.pcbi.0020095
Xia, M., Wang, J. & He, Y. BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One 8, e68910 (2013).
pubmed: 23861951
pmcid: 3701683
doi: 10.1371/journal.pone.0068910
Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).
pubmed: 17329441
pmcid: 6673496
doi: 10.1523/JNEUROSCI.3886-06.2007
Pfurtscheller, G., Brunner, C., Schlögl, A. & Lopes da Silva, F. H. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153–159 (2006).
pubmed: 16443377
doi: 10.1016/j.neuroimage.2005.12.003
Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5, 900–904 (2002).
pubmed: 12145636
doi: 10.1038/nn896
Kertzman, C., Schwarz, U., Zeffiro, T. A. & Hallett, M. The role of posterior parietal cortex in visually guided reaching movements in humans. Exp. Brain Res. 114, 170–183 (1997).
pubmed: 9125463
doi: 10.1007/PL00005617
Beurze, S. M., De Lange, F. P., Toni, I. & Medendorp, W. P. Integration of target and effector information in the human brain during reach planning. J. Neurophysiol. 97, 188–199 (2007).
pubmed: 16928798
doi: 10.1152/jn.00456.2006
Klein, T. A. et al. Neural correlates of error awareness. Neuroimage 34, 1774–1781 (2007).
pubmed: 17185003
doi: 10.1016/j.neuroimage.2006.11.014
Bernard, R. A. et al. Cortical activation during rhythmic hand movements performed under three types of control: An fMRI study. Cogn. Affect. Behav. Neurosci. 2, 271–281 (2002).
pubmed: 12775191
doi: 10.3758/CABN.2.3.271
Silver, M. A., Ress, D. & Heeger, D. J. Neural correlates of sustained spatial attention in human early visual cortex. J. Neurophysiol. 97, 229–237 (2007).
pubmed: 16971677
doi: 10.1152/jn.00677.2006
Kübler, A., Dixon, V. & Garavan, H. Automaticity and reestablishment of executive control—An fMRI study. J. Cogn. Neurosci. 18, 1331–1342 (2006).
pubmed: 16859418
doi: 10.1162/jocn.2006.18.8.1331
Köhler, S., Kapur, S., Moscovitch, M., Winocur, G. & Houle, S. Dissociation of pathways for object and spatial vision: A PET study in humans. NeuroReport 6, 1865–1868 (1995).
pubmed: 8547586
doi: 10.1097/00001756-199510020-00011
Baldauf, D. & Deubel, H. Attentional selection of multiple goal positions before rapid hand movement sequences: An event-related potential study. J. Cogn. Neurosci. 21, 18–29 (2009).
pubmed: 18510446
doi: 10.1162/jocn.2008.21021
Baldauf, D. & Deubel, H. Attentional landscapes in reaching and grasping. Vis. Res. 50, 999–1013 (2010).
pubmed: 20219518
doi: 10.1016/j.visres.2010.02.008
Francis, S. T. et al. fMRI of the responses to vibratory stimulation of digit tips. Neuroimage 11, 188–202 (2000).
pubmed: 10694461
doi: 10.1006/nimg.2000.0541
Begliomini, C., Wall, M. B., Smith, A. T. & Castiello, U. Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur. J. Neurosci. 25, 1245–1252 (2007).
pubmed: 17331220
doi: 10.1111/j.1460-9568.2007.05365.x
Buccino, G. et al. Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 42, 323–334 (2004).
pubmed: 15091346
doi: 10.1016/S0896-6273(04)00181-3
Tanaka, S. & Inui, T. Cortical involvement for action imitation of hand/arm postures versus finger configurations: An fMRI study. NeuroReport 13, 1599–1602 (2002).
pubmed: 12352609
doi: 10.1097/00001756-200209160-00005
Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C. & Hummel, F. C. Dissociation of sustained attention from central executive functions: Local activity and interregional connectivity in the theta range. Eur. J. Neurosci. 25, 587–593 (2007).
pubmed: 17284201
doi: 10.1111/j.1460-9568.2006.05286.x
Rodríguez-Fornells, A., Kurzbuch, A. R. & Münte, T. F. Time course of error detection and correction in humans: Neurophysiological evidence. J. Neurosci. 22, 9990–9996 (2002).
pubmed: 12427856
pmcid: 6757828
doi: 10.1523/JNEUROSCI.22-22-09990.2002
Perfetti, B. et al. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task. J. Neurophysiol. 105, 18–27 (2011).
pubmed: 21047934
doi: 10.1152/jn.00778.2010
Rizzolatti, G. et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).
pubmed: 8891654
doi: 10.1007/BF00227301
Cheng, K., Fujita, H., Kanno, I., Miura, S. & Tanaka, K. Human cortical regions activated by wide-field visual motion: An H215O PET study. J. Neurophysiol. 74, 413–427 (1995).
pubmed: 7472342
doi: 10.1152/jn.1995.74.1.413
Sarazin, M. et al. Clinicometabolic dissociation of cognitive functions and social behavior in frontal lobe lesions. Neurology 51, 142–148 (1998).
pubmed: 9674793
doi: 10.1212/WNL.51.1.142
Matsumura, M. et al. Role of the cerebellum in implicit motor skill learning: A PET study. Brain Res. Bull. 63, 471–483 (2004).
pubmed: 15249112
doi: 10.1016/j.brainresbull.2004.04.008
Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).
pubmed: 9563953
doi: 10.1126/science.280.5364.747
Ernst, M. et al. Choice selection and reward anticipation: An fMRI study. Neuropsychologia 42, 1585–1597 (2004).
pubmed: 15327927
doi: 10.1016/j.neuropsychologia.2004.05.011
Wyart, V., de Gardelle, V., Scholl, J. & Summerfield, C. Rhythmic fluctuations in evidence accumulation during decision making in the human brain. Neuron 76, 847–858 (2012).
pubmed: 23177968
pmcid: 3975574
doi: 10.1016/j.neuron.2012.09.015
Hamel-Thibault, A., Thénault, F., Whittingstall, K. & Bernier, P. M. Delta-band oscillations in motor regions predict hand selection for reaching. Cereb. Cortex 28, 574–584 (2018).
pubmed: 27999125
Babiloni, C. et al. Frontal functional connectivity of electrocorticographic delta and theta rhythms during action execution versus action observation in humans. Front. Behav. Neurosci. 11, 20 (2017).
pubmed: 28223926
pmcid: 5294389
doi: 10.3389/fnbeh.2017.00020
Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
pubmed: 17695343
doi: 10.3758/BF03193146
Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
pubmed: 5146491
doi: 10.1016/0028-3932(71)90067-4
Coluccini, M., Maini, E. S., Martelloni, C., Sgandurra, G. & Cioni, G. Kinematic characterization of functional reach to grasp in normal and in motor disabled children. Gait Posture 25, 493–501 (2007).
pubmed: 17270446
doi: 10.1016/j.gaitpost.2006.12.015
Van Der Heide, J. C., Fock, J. M., Otten, B., Stremmelaar, E. & Hadders-Algra, M. Kinematic characteristics of reaching movements in preterm children with cerebral palsy. Pediatr. Res. 57, 883–889 (2005).
pubmed: 15774828
doi: 10.1203/01.PDR.0000157771.20683.14
Kitazawa, S. Optimization of goal-directed movements in the cerebellum: A random walk hypothesis. Neurosci. Res. 43, 289–294 (2002).
pubmed: 12135772
doi: 10.1016/S0168-0102(02)00058-5
Yan, J. H. Effects of aging on linear and curvilinear aiming arm movements. Exp. Aging Res. 26, 393–407 (2000).
pubmed: 11091944
doi: 10.1080/036107300750015778
Ceccarini, F. & Castiello, U. The grasping side of post-error slowing. Cognition 179, 1–13 (2018).
pubmed: 29886094
doi: 10.1016/j.cognition.2018.05.026
Schomer, D. L. & Da Silva, F. L. (eds) Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields 6th edn. (Lippincott Williams & Wilkins, 2011).
Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999).
pubmed: 18252563
doi: 10.1109/72.761722
Artoni, F., Menicucci, D., Delorme, A., Makeig, S. & Micera, S. RELICA: A method for estimating the reliability of independent components. Neuroimage 103, 391–400 (2014).
pubmed: 25234117
doi: 10.1016/j.neuroimage.2014.09.010
Pascual-Marqui, R. D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12 (2002).
pubmed: 12575463
Pascual-Marqui, R. D., Michel, C. M. & Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994).
pubmed: 7876038
doi: 10.1016/0167-8760(84)90014-X
Frei, E. et al. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum. Brain Mapp. 14, 152–165 (2001).
pubmed: 11559960
pmcid: 6872058
doi: 10.1002/hbm.1049
Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. B Biol. Sci. 356, 1293–1322 (2001).
doi: 10.1098/rstb.2001.0915
Pascual-Marqui, R. D. Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: Frequency decomposition. arXiv:0711.1455 (2007).
Langer, N., Pedroni, A. & Jäncke, L. The Problem of Thresholding in Small-World Network Analysis. PLoS One 8, e53199 (2013).
pubmed: 23301043
pmcid: 3536769
doi: 10.1371/journal.pone.0053199
Onnela, J. P., Saramäki, J., Kertész, J. & Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 065103 (2005).
doi: 10.1103/PhysRevE.71.065103