Connectivity modulations induced by reach&grasp movements: a multidimensional approach.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 11 2021
Historique:
received: 18 05 2021
accepted: 08 11 2021
entrez: 30 11 2021
pubmed: 1 12 2021
medline: 27 1 2022
Statut: epublish

Résumé

Reach&grasp requires highly coordinated activation of different brain areas. We investigated whether reach&grasp kinematics is associated to EEG-based networks changes. We enrolled 10 healthy subjects. We analyzed the reach&grasp kinematics of 15 reach&grasp movements performed with each upper limb. Simultaneously, we obtained a 64-channel EEG, synchronized with the reach&grasp movement time points. We elaborated EEG signals with EEGLAB 12 in order to obtain event related synchronization/desynchronization (ERS/ERD) and lagged linear coherence between Brodmann areas. Finally, we evaluated network topology via sLORETA software, measuring network local and global efficiency (clustering and path length) and the overall balance (small-worldness). We observed a widespread ERD in α and β bands during reach&grasp, especially in the centro-parietal regions of the hemisphere contralateral to the movement. Regarding functional connectivity, we observed an α lagged linear coherence reduction among Brodmann areas contralateral to the arm involved in the reach&grasp movement. Interestingly, left arm movement determined widespread changes of α lagged linear coherence, specifically among right occipital regions, insular cortex and somatosensory cortex, while the right arm movement exerted a restricted contralateral sensory-motor cortex modulation. Finally, no change between rest and movement was found for clustering, path length and small-worldness. Through a synchronized acquisition, we explored the cortical correlates of the reach&grasp movement. Despite EEG perturbations, suggesting that the non-dominant reach&grasp network has a complex architecture probably linked to the necessity of a higher visual control, the pivotal topological measures of network local and global efficiency remained unaffected.

Identifiants

pubmed: 34845265
doi: 10.1038/s41598-021-02458-x
pii: 10.1038/s41598-021-02458-x
pmc: PMC8630117
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23097

Informations de copyright

© 2021. The Author(s).

Références

Fattori, P., Breveglieri, R., Amoroso, K. & Galletti, C. Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque. Eur. J. Neurosci. 20, 2457–2466 (2004).
pubmed: 15525286 doi: 10.1111/j.1460-9568.2004.03697.x
Grafton, S. T. The cognitive neuroscience of prehension: Recent developments. Exp. Brain Res. 204, 475–491 (2010).
pubmed: 20532487 pmcid: 2903689 doi: 10.1007/s00221-010-2315-2
Kaas, J. H., Gharbawie, O. A. & Stepniewska, I. Cortical networks for ethologically relevant behaviors in primates. Am. J. Primatol. 75, 407–414 (2013).
pubmed: 22865408 doi: 10.1002/ajp.22065
Caliandro, P. et al. Small-world characteristics of cortical connectivity changes in acute stroke. Neurorehabil. Neural Repair 31, 81–94 (2017).
pubmed: 27511048 doi: 10.1177/1545968316662525
Vecchio, F. et al. Acute cerebellar stroke and middle cerebral artery stroke exert distinctive modifications on functional cortical connectivity: A comparative study via EEG graph theory. Clin. Neurophysiol. 130, 997–1007 (2019).
pubmed: 31005052 doi: 10.1016/j.clinph.2019.03.017
Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).
pubmed: 23245604 doi: 10.1016/S0140-6736(12)61728-0
Feigin, V. L. et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 383, 245–255 (2014).
pubmed: 24449944 pmcid: 4181600 doi: 10.1016/S0140-6736(13)61953-4
Dubovik, S. et al. The behavioral significance of coherent resting-state oscillations after stroke. Neuroimage 61, 249–257 (2012).
pubmed: 22440653 doi: 10.1016/j.neuroimage.2012.03.024
Wang, L. et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 133, 1224–1238 (2010).
pubmed: 20354002 doi: 10.1093/brain/awq043
Jeannerod, M. The Neural and Behavioural Organization of Goal-Directed Movements (Clarendon Press/Oxford University Press, 1988).
Karl, J. M. & Whishaw, I. Q. Different evolutionary origins for the Reach and the Grasp: An explanation for dual visuomotor channels in primate parietofrontal cortex. Front. Neurol. 4, 208 (2013).
pubmed: 24391626 pmcid: 3870330 doi: 10.3389/fneur.2013.00208
Fagg, A. H. & Arbib, M. A. Modeling parietal-premotor interactions in primate control of grasping. Neural Netw. 11, 1277–1303 (1998).
pubmed: 12662750 doi: 10.1016/S0893-6080(98)00047-1
Borra, E. et al. Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb. Cortex 18, 1094–1111 (2008).
pubmed: 17720686 doi: 10.1093/cercor/bhm146
Dea, M., Hamadjida, A., Elgbeili, G., Quessy, S. & Dancause, N. Different patterns of cortical inputs to subregions of the primary motor cortex hand representation in Cebus apella. Cereb. Cortex 26, 1747–1761 (2016).
pubmed: 26966266 pmcid: 4785954 doi: 10.1093/cercor/bhv324
Stark, E., Asher, I. & Abeles, M. Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site. J. Neurophysiol. 97, 3351–3364 (2007).
pubmed: 17360824 doi: 10.1152/jn.01328.2006
Lehmann, S. J. & Scherberger, H. Reach and gaze representations in macaque parietal and premotor grasp areas. J. Neurosci. 33, 7038–7049 (2013).
pubmed: 23595761 pmcid: 6618884 doi: 10.1523/JNEUROSCI.5568-12.2013
C, B. et al. An investigation of the neural circuits underlying reaching and reach-to-grasp movements: From planning to execution. Front. Hum. Neurosci. 8, 676 (2014).
Hsu, C. C. et al. Study of repetitive movements induced oscillatory activities in healthy subjects and chronic stroke patients. Sci. Rep. 6, 39046 (2016).
pubmed: 27976723 pmcid: 5157038 doi: 10.1038/srep39046
Nakayashiki, K., Saeki, M., Takata, Y., Hayashi, Y. & Kondo, T. Modulation of event-related desynchronization during kinematic and kinetic hand movements. J. Neuroeng. Rehabil. 11, 90 (2014).
pubmed: 24886610 pmcid: 4077682 doi: 10.1186/1743-0003-11-90
Formaggio, E. et al. Modulation of event-related desynchronization in robot-assisted hand performance: Brain oscillatory changes in active, passive and imagined movements. J. Neuroeng. Rehabil. 10, 24 (2013).
pubmed: 23442349 pmcid: 3598512 doi: 10.1186/1743-0003-10-24
Storti, S. F., Formaggio, E., Manganotti, P. & Menegaz, G. Brain network connectivity and topological analysis during voluntary arm movements. Clin. EEG Neurosci. 47, 276–290 (2016).
pubmed: 26251456 doi: 10.1177/1550059415598905
Faith, A., Chen, Y., Rikakis, T. & Iasemidis, L. Interactive rehabilitation and dynamical analysis of scalp EEG. in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011, 1387–1390 (Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011).
Puxeddu, M. G. et al. The modular organization of brain cortical connectivity across the human lifespan. Neuroimage 218, 116974 (2020).
pubmed: 32450249 doi: 10.1016/j.neuroimage.2020.116974
Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010).
pubmed: 19819337 doi: 10.1016/j.neuroimage.2009.10.003
Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15, 247–262 (2013).
pubmed: 24174898 pmcid: 3811098 doi: 10.31887/DCNS.2013.15.3/osporns
Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2, 0805–0815 (2006).
doi: 10.1371/journal.pcbi.0020095
Xia, M., Wang, J. & He, Y. BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One 8, e68910 (2013).
pubmed: 23861951 pmcid: 3701683 doi: 10.1371/journal.pone.0068910
Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).
pubmed: 17329441 pmcid: 6673496 doi: 10.1523/JNEUROSCI.3886-06.2007
Pfurtscheller, G., Brunner, C., Schlögl, A. & Lopes da Silva, F. H. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153–159 (2006).
pubmed: 16443377 doi: 10.1016/j.neuroimage.2005.12.003
Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5, 900–904 (2002).
pubmed: 12145636 doi: 10.1038/nn896
Kertzman, C., Schwarz, U., Zeffiro, T. A. & Hallett, M. The role of posterior parietal cortex in visually guided reaching movements in humans. Exp. Brain Res. 114, 170–183 (1997).
pubmed: 9125463 doi: 10.1007/PL00005617
Beurze, S. M., De Lange, F. P., Toni, I. & Medendorp, W. P. Integration of target and effector information in the human brain during reach planning. J. Neurophysiol. 97, 188–199 (2007).
pubmed: 16928798 doi: 10.1152/jn.00456.2006
Klein, T. A. et al. Neural correlates of error awareness. Neuroimage 34, 1774–1781 (2007).
pubmed: 17185003 doi: 10.1016/j.neuroimage.2006.11.014
Bernard, R. A. et al. Cortical activation during rhythmic hand movements performed under three types of control: An fMRI study. Cogn. Affect. Behav. Neurosci. 2, 271–281 (2002).
pubmed: 12775191 doi: 10.3758/CABN.2.3.271
Silver, M. A., Ress, D. & Heeger, D. J. Neural correlates of sustained spatial attention in human early visual cortex. J. Neurophysiol. 97, 229–237 (2007).
pubmed: 16971677 doi: 10.1152/jn.00677.2006
Kübler, A., Dixon, V. & Garavan, H. Automaticity and reestablishment of executive control—An fMRI study. J. Cogn. Neurosci. 18, 1331–1342 (2006).
pubmed: 16859418 doi: 10.1162/jocn.2006.18.8.1331
Köhler, S., Kapur, S., Moscovitch, M., Winocur, G. & Houle, S. Dissociation of pathways for object and spatial vision: A PET study in humans. NeuroReport 6, 1865–1868 (1995).
pubmed: 8547586 doi: 10.1097/00001756-199510020-00011
Baldauf, D. & Deubel, H. Attentional selection of multiple goal positions before rapid hand movement sequences: An event-related potential study. J. Cogn. Neurosci. 21, 18–29 (2009).
pubmed: 18510446 doi: 10.1162/jocn.2008.21021
Baldauf, D. & Deubel, H. Attentional landscapes in reaching and grasping. Vis. Res. 50, 999–1013 (2010).
pubmed: 20219518 doi: 10.1016/j.visres.2010.02.008
Francis, S. T. et al. fMRI of the responses to vibratory stimulation of digit tips. Neuroimage 11, 188–202 (2000).
pubmed: 10694461 doi: 10.1006/nimg.2000.0541
Begliomini, C., Wall, M. B., Smith, A. T. & Castiello, U. Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur. J. Neurosci. 25, 1245–1252 (2007).
pubmed: 17331220 doi: 10.1111/j.1460-9568.2007.05365.x
Buccino, G. et al. Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 42, 323–334 (2004).
pubmed: 15091346 doi: 10.1016/S0896-6273(04)00181-3
Tanaka, S. & Inui, T. Cortical involvement for action imitation of hand/arm postures versus finger configurations: An fMRI study. NeuroReport 13, 1599–1602 (2002).
pubmed: 12352609 doi: 10.1097/00001756-200209160-00005
Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C. & Hummel, F. C. Dissociation of sustained attention from central executive functions: Local activity and interregional connectivity in the theta range. Eur. J. Neurosci. 25, 587–593 (2007).
pubmed: 17284201 doi: 10.1111/j.1460-9568.2006.05286.x
Rodríguez-Fornells, A., Kurzbuch, A. R. & Münte, T. F. Time course of error detection and correction in humans: Neurophysiological evidence. J. Neurosci. 22, 9990–9996 (2002).
pubmed: 12427856 pmcid: 6757828 doi: 10.1523/JNEUROSCI.22-22-09990.2002
Perfetti, B. et al. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task. J. Neurophysiol. 105, 18–27 (2011).
pubmed: 21047934 doi: 10.1152/jn.00778.2010
Rizzolatti, G. et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).
pubmed: 8891654 doi: 10.1007/BF00227301
Cheng, K., Fujita, H., Kanno, I., Miura, S. & Tanaka, K. Human cortical regions activated by wide-field visual motion: An H215O PET study. J. Neurophysiol. 74, 413–427 (1995).
pubmed: 7472342 doi: 10.1152/jn.1995.74.1.413
Sarazin, M. et al. Clinicometabolic dissociation of cognitive functions and social behavior in frontal lobe lesions. Neurology 51, 142–148 (1998).
pubmed: 9674793 doi: 10.1212/WNL.51.1.142
Matsumura, M. et al. Role of the cerebellum in implicit motor skill learning: A PET study. Brain Res. Bull. 63, 471–483 (2004).
pubmed: 15249112 doi: 10.1016/j.brainresbull.2004.04.008
Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).
pubmed: 9563953 doi: 10.1126/science.280.5364.747
Ernst, M. et al. Choice selection and reward anticipation: An fMRI study. Neuropsychologia 42, 1585–1597 (2004).
pubmed: 15327927 doi: 10.1016/j.neuropsychologia.2004.05.011
Wyart, V., de Gardelle, V., Scholl, J. & Summerfield, C. Rhythmic fluctuations in evidence accumulation during decision making in the human brain. Neuron 76, 847–858 (2012).
pubmed: 23177968 pmcid: 3975574 doi: 10.1016/j.neuron.2012.09.015
Hamel-Thibault, A., Thénault, F., Whittingstall, K. & Bernier, P. M. Delta-band oscillations in motor regions predict hand selection for reaching. Cereb. Cortex 28, 574–584 (2018).
pubmed: 27999125
Babiloni, C. et al. Frontal functional connectivity of electrocorticographic delta and theta rhythms during action execution versus action observation in humans. Front. Behav. Neurosci. 11, 20 (2017).
pubmed: 28223926 pmcid: 5294389 doi: 10.3389/fnbeh.2017.00020
Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
pubmed: 17695343 doi: 10.3758/BF03193146
Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
pubmed: 5146491 doi: 10.1016/0028-3932(71)90067-4
Coluccini, M., Maini, E. S., Martelloni, C., Sgandurra, G. & Cioni, G. Kinematic characterization of functional reach to grasp in normal and in motor disabled children. Gait Posture 25, 493–501 (2007).
pubmed: 17270446 doi: 10.1016/j.gaitpost.2006.12.015
Van Der Heide, J. C., Fock, J. M., Otten, B., Stremmelaar, E. & Hadders-Algra, M. Kinematic characteristics of reaching movements in preterm children with cerebral palsy. Pediatr. Res. 57, 883–889 (2005).
pubmed: 15774828 doi: 10.1203/01.PDR.0000157771.20683.14
Kitazawa, S. Optimization of goal-directed movements in the cerebellum: A random walk hypothesis. Neurosci. Res. 43, 289–294 (2002).
pubmed: 12135772 doi: 10.1016/S0168-0102(02)00058-5
Yan, J. H. Effects of aging on linear and curvilinear aiming arm movements. Exp. Aging Res. 26, 393–407 (2000).
pubmed: 11091944 doi: 10.1080/036107300750015778
Ceccarini, F. & Castiello, U. The grasping side of post-error slowing. Cognition 179, 1–13 (2018).
pubmed: 29886094 doi: 10.1016/j.cognition.2018.05.026
Schomer, D. L. & Da Silva, F. L. (eds) Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields 6th edn. (Lippincott Williams & Wilkins, 2011).
Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999).
pubmed: 18252563 doi: 10.1109/72.761722
Artoni, F., Menicucci, D., Delorme, A., Makeig, S. & Micera, S. RELICA: A method for estimating the reliability of independent components. Neuroimage 103, 391–400 (2014).
pubmed: 25234117 doi: 10.1016/j.neuroimage.2014.09.010
Pascual-Marqui, R. D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12 (2002).
pubmed: 12575463
Pascual-Marqui, R. D., Michel, C. M. & Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994).
pubmed: 7876038 doi: 10.1016/0167-8760(84)90014-X
Frei, E. et al. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum. Brain Mapp. 14, 152–165 (2001).
pubmed: 11559960 pmcid: 6872058 doi: 10.1002/hbm.1049
Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. B Biol. Sci. 356, 1293–1322 (2001).
doi: 10.1098/rstb.2001.0915
Pascual-Marqui, R. D. Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: Frequency decomposition. arXiv:0711.1455 (2007).
Langer, N., Pedroni, A. & Jäncke, L. The Problem of Thresholding in Small-World Network Analysis. PLoS One 8, e53199 (2013).
pubmed: 23301043 pmcid: 3536769 doi: 10.1371/journal.pone.0053199
Onnela, J. P., Saramäki, J., Kertész, J. & Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71, 065103 (2005).
doi: 10.1103/PhysRevE.71.065103

Auteurs

Pietro Caliandro (P)

UOC Neurologia - Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Gloria Menegaz (G)

Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.

Chiara Iacovelli (C)

UOC Riabilitazione e Medicina Fisica - Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy. chiara.iacovelli@policlinicogemelli.it.

Carmela Conte (C)

Policlinico Italia, Piazza del campidano 6, 00162, Roma, Italy.

Giuseppe Reale (G)

UOC Neuroriabilitazione ad Alta Intensità - Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Paolo Calabresi (P)

Clinica Neurologica, Dipartimento di Neuroscienze, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.

Silvia F Storti (SF)

Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH