Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
30 11 2021
Historique:
received: 23 12 2019
accepted: 09 11 2021
entrez: 1 12 2021
pubmed: 2 12 2021
medline: 4 1 2022
Statut: epublish

Résumé

Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.

Identifiants

pubmed: 34848715
doi: 10.1038/s41467-021-27306-4
pii: 10.1038/s41467-021-27306-4
pmc: PMC8633328
doi:

Substances chimiques

Amino Acids 0
Autoantigens 0
DNA-Binding Proteins 0
Ki antigen 0
RAD23B protein, human 0
Ubiquitin 0
Proteasome Endopeptidase Complex EC 3.4.25.1
DNA Repair Enzymes EC 6.5.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6984

Subventions

Organisme : CIHR
ID : MOP159539
Pays : Canada
Organisme : CIHR
ID : GER-163050
Pays : Canada
Organisme : CIHR
ID : MOP126009
Pays : Canada

Informations de copyright

© 2021. The Author(s).

Références

Harper, J. W., Ordureau, A. & Heo, J. M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93–108 (2018).
pubmed: 29358684 doi: 10.1038/nrm.2017.129
Grumati, P. & Dikic, I. Ubiquitin signaling and autophagy. J. Biol. Chem. 293, 5404–5413 (2018).
pubmed: 29187595 doi: 10.1074/jbc.TM117.000117
Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).
pubmed: 29618831 doi: 10.1038/s41580-018-0003-4
Stadtmueller, B. M. & Hill, C. P. Proteasome activators. Mol. Cell 41, 8–19 (2011).
pubmed: 21211719 pmcid: 3040445 doi: 10.1016/j.molcel.2010.12.020
Finley, D., Chen, X. & Walters, K. J. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41, 77–93 (2016).
pubmed: 26643069 doi: 10.1016/j.tibs.2015.10.009
Rousseau, A. & Bertolotti, A. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 19, 697–712 (2018).
pubmed: 30065390 doi: 10.1038/s41580-018-0040-z
Bhattacharyya, S., Yu, H., Mim, C. & Matouschek, A. Regulated protein turnover: snapshots of the proteasome in action. Nat. Rev. Mol. Cell Biol. 15, 122–133 (2014).
pubmed: 24452470 pmcid: 4384331 doi: 10.1038/nrm3741
Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N. & Ciechanover, A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 26, 869–885 (2016).
pubmed: 27444871 pmcid: 4973335 doi: 10.1038/cr.2016.86
Demartino, G. N. & Gillette, T. G. Proteasomes: machines for all reasons. Cell 129, 659–662 (2007).
pubmed: 17512401 doi: 10.1016/j.cell.2007.05.007
Vabulas, R. M. & Hartl, F. U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960–1963 (2005).
pubmed: 16373576 doi: 10.1126/science.1121925
Suraweera, A., Munch, C., Hanssum, A. & Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48, 242–253 (2012).
pubmed: 22959274 pmcid: 3482661 doi: 10.1016/j.molcel.2012.08.003
Rousseau, A. & Bertolotti, A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536, 184–189 (2016).
pubmed: 27462806 pmcid: 4990136 doi: 10.1038/nature18943
Zhao, J., Zhai, B., Gygi, S. P. & Goldberg, A. L. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl Acad. Sci. USA 112, 15790–15797 (2015).
pubmed: 26669439 pmcid: 4703015 doi: 10.1073/pnas.1521919112
Zhao, J. & Goldberg, A. L. Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR. Autophagy 12, 1967–1970 (2016).
pubmed: 27459110 pmcid: 5079674 doi: 10.1080/15548627.2016.1205770
Zhang, Y. et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513, 440–443 (2014).
pubmed: 25043031 pmcid: 4402229 doi: 10.1038/nature13492
Laporte, D., Salin, B., Daignan-Fornier, B. & Sagot, I. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J. Cell Biol. 181, 737–745 (2008).
pubmed: 18504300 pmcid: 2396804 doi: 10.1083/jcb.200711154
Gu, Z. C. et al. Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast. Mol. Biol. Cell 28, 2479–2491 (2017).
pubmed: 28768827 pmcid: 5597321 doi: 10.1091/mbc.e17-03-0162
Marshall, R. S. & Vierstra, R. D. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation. Elife 7, https://doi.org/10.7554/eLife.34532 (2018).
Marshall, R. S., Li, F., Gemperline, D. C., Book, A. J. & Vierstra, R. D. Autophagic degradation of the 26S proteasome Is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053–1066 (2015).
pubmed: 26004230 pmcid: 4903074 doi: 10.1016/j.molcel.2015.04.023
Cohen-Kaplan, V. et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl Acad. Sci. USA 113, E7490–E7499 (2016).
pubmed: 27791183 pmcid: 5127335 doi: 10.1073/pnas.1615455113
Choo, A. Y., Yoon, S., Kim, S., Roux, P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA 105, 17414–17419 (2008).
pubmed: 18955708 pmcid: 2582304 doi: 10.1073/pnas.0809136105
Yasuda, S. et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300 (2020).
pubmed: 32025036 doi: 10.1038/s41586-020-1982-9
Zhu, S. et al. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair. Elife 9, e53402 (2020).
pubmed: 31951198 pmcid: 7012618 doi: 10.7554/eLife.53402
van den Boom, J. & Meyer, H. VCP/p97-Mediated unfolding as a principle in protein homeostasis and signaling. Mol. Cell 69, 182–194 (2018).
pubmed: 29153394 doi: 10.1016/j.molcel.2017.10.028
Adam, S. A., Sterne-Marr, R. & Gerace, L. Nuclear protein import using digitonin-permeabilized cells. Methods Enzymol. 219, 97–110 (1992).
pubmed: 1488017 doi: 10.1016/0076-6879(92)19013-V
Zhou, H. X., Nguemaha, V., Mazarakos, K. & Qin, S. Why do disordered and structured proteins behave differently in phase separation? Trends Biochem. Sci. 43, 499–516 (2018).
pubmed: 29716768 pmcid: 6014895 doi: 10.1016/j.tibs.2018.03.007
Kroschwald, S. et al. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. Elife 4, e06807 (2015).
pubmed: 26238190 pmcid: 4522596 doi: 10.7554/eLife.06807
Uversky, V. N. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 44, 18–30 (2017).
pubmed: 27838525 doi: 10.1016/j.sbi.2016.10.015
Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell Biol. 21, 1719–1729 (2001).
pubmed: 11238909 pmcid: 86718 doi: 10.1128/MCB.21.5.1719-1729.2001
Yadav, T., Quivy, J. P. & Almouzni, G. Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science 361, 1332–1336 (2018).
pubmed: 30262494 doi: 10.1126/science.aat8950
Sternsdorf, T., Jensen, K. & Will, H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J. Cell Biol. 139, 1621–1634 (1997).
pubmed: 9412458 pmcid: 2132645 doi: 10.1083/jcb.139.7.1621
Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).
pubmed: 9427741 pmcid: 1170358 doi: 10.1093/emboj/17.1.61
D’Arcy, P. et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med 17, 1636–1640 (2011).
pubmed: 22057347 doi: 10.1038/nm.2536
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev. Biochem 78, 477–513 (2009).
pubmed: 19489727 pmcid: 3431160 doi: 10.1146/annurev.biochem.78.081507.101607
Paraskevopoulos, K. et al. Dss1 is a 26S proteasome ubiquitin receptor. Mol. Cell 56, 453–461 (2014).
pubmed: 25306921 pmcid: 4232310 doi: 10.1016/j.molcel.2014.09.008
Suzuki, R. & Kawahara, H. UBQLN4 recognizes mislocalized transmembrane domain proteins and targets these to proteasomal degradation. EMBO Rep. 17, 842–857 (2016).
pubmed: 27113755 pmcid: 5278606 doi: 10.15252/embr.201541402
Hjerpe, R. et al. UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166, 935–949 (2016).
pubmed: 27477512 pmcid: 5003816 doi: 10.1016/j.cell.2016.07.001
Watkins, J. F., Sung, P., Prakash, L. & Prakash, S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell Biol. 13, 7757–7765 (1993).
pubmed: 8246991 pmcid: 364847
Wang, Z. & Zhang, H. Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends Cell Biol. 29, 417–427 (2019).
pubmed: 30826216 doi: 10.1016/j.tcb.2019.01.008
Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).
pubmed: 30682370 pmcid: 6445271 doi: 10.1016/j.cell.2018.12.035
Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715–718 (1998).
pubmed: 9490418 doi: 10.1038/35661
Chen, L., Shinde, U., Ortolan, T. G. & Madura, K. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2, 933–938 (2001).
pubmed: 11571271 pmcid: 1084081 doi: 10.1093/embo-reports/kve203
Berkers, C. R. et al. Profiling proteasome activity in tissue with fluorescent probes. Mol. Pharm. 4, 739–748 (2007).
pubmed: 17708652 doi: 10.1021/mp0700256
Lowman, X. H. et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 40, 823–833 (2010).
pubmed: 21145489 doi: 10.1016/j.molcel.2010.11.035
Wensveen, F. M., Alves, N. L., Derks, I. A., Reedquist, K. A. & Eldering, E. Apoptosis induced by overall metabolic stress converges on the Bcl-2 family proteins Noxa and Mcl-1. Apoptosis 16, 708–721 (2011).
pubmed: 21516346 pmcid: 3098366 doi: 10.1007/s10495-011-0599-8
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Seger, Y. R. et al. Transformation of normal human cells in the absence of telomerase activation. Cancer cell 2, 401–413 (2002).
pubmed: 12450795 doi: 10.1016/S1535-6108(02)00183-6
Broach, J. R. Nutritional control of growth and development in yeast. Genetics 192, 73–105 (2012).
pubmed: 22964838 pmcid: 3430547 doi: 10.1534/genetics.111.135731
Palm, W. & Thompson, C. B. Nutrient acquisition strategies of mammalian cells. Nature 546, 234–242 (2017).
pubmed: 28593971 pmcid: 5541675 doi: 10.1038/nature22379
Sun, D., Wu, R., Zheng, J., Li, P. & Yu, L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res 28, 405–415 (2018).
pubmed: 29507397 pmcid: 5939046 doi: 10.1038/s41422-018-0017-7
Herhaus, L. & Dikic, I. Ubiquitin-induced phase separation of p62/SQSTM1. Cell Res 28, 389–390 (2018).
pubmed: 29572488 pmcid: 5939040 doi: 10.1038/s41422-018-0030-x
Dao, T. P. et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via Disruption of multivalent interactions. Mol. Cell 69, 965–978.e966 (2018).
pubmed: 29526694 pmcid: 6181577 doi: 10.1016/j.molcel.2018.02.004
Wu, G. et al. Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev. Anim. Biosci. 2, 387–417 (2014).
pubmed: 25384149 doi: 10.1146/annurev-animal-022513-114113
Broer, S. & Broer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 474, 1935–1963 (2017).
pubmed: 28546457 doi: 10.1042/BCJ20160822
Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).
pubmed: 28522535 doi: 10.1126/science.aaf6846
Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).
pubmed: 25644265 pmcid: 4316379 doi: 10.1158/0008-5472.CAN-14-2211
Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).
pubmed: 27617932 pmcid: 5536113 doi: 10.1038/ncb3410
Daou, S. et al. The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. J. Biol. Chem. 290, 28643–28663 (2015).
pubmed: 26416890 pmcid: 4661380 doi: 10.1074/jbc.M115.661553
Mashtalir, N. et al. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54, 392–406 (2014).
pubmed: 24703950 doi: 10.1016/j.molcel.2014.03.002
Daou, S. et al. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc. Natl Acad. Sci. USA 108, 2747–2752 (2011).
pubmed: 21285374 pmcid: 3041071 doi: 10.1073/pnas.1013822108
Melo, R. C., Morgan, E., Monahan-Earley, R., Dvorak, A. M. & Weller, P. F. Pre-embedding immunogold labeling to optimize protein localization at subcellular compartments and membrane microdomains of leukocytes. Nat. Protoc. 9, 2382–2394 (2014).
pubmed: 25211515 pmcid: 4204927 doi: 10.1038/nprot.2014.163
Luft, J. H. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409–414 (1961).
pubmed: 13764136 pmcid: 2224998 doi: 10.1083/jcb.9.2.409
Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1196).
doi: 10.1006/jcis.1996.0217
Lottersberger, F., Karssemeijer, R. A., Dimitrova, N. & De Lange, T. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163, 880–893 (2015).
pubmed: 26544937 pmcid: 4636737 doi: 10.1016/j.cell.2015.09.057
Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. & Uversky, V. N. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta 1804, 996–1010 (2010).
pubmed: 20100603 pmcid: 2882806 doi: 10.1016/j.bbapap.2010.01.011
Romero P. et al. Sequence complexity of disordered protein. Proteins 42, 38–48 (2001).
Kyte, J. & D., R. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
pubmed: 7108955 doi: 10.1016/0022-2836(82)90515-0
Wurtele, H. et al. Histone H3 lysine 56 acetylation and the response to DNA replication fork damage. Mol. Cell Biol. 32, 154–172 (2012).
pubmed: 22025679 pmcid: 3255698 doi: 10.1128/MCB.05415-11
Mallette, F. A. & Richard, S. JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5. Cell Rep. 2, 1233–1243 (2012).
pubmed: 23168260 doi: 10.1016/j.celrep.2012.09.033
Yu, H. et al. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol. Cell Biol. 30, 5071–5085 (2010).
pubmed: 20805357 pmcid: 2953049 doi: 10.1128/MCB.00396-10

Auteurs

Maxime Uriarte (M)

Department of Biochemistry and Molecular Medicine, University of Montréal, H3C 3J7, Montreal, QC, Canada.
Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.

Nadine Sen Nkwe (N)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Molecular Biology Programs, University of Montreal, Montréal, H3A 0G4, QC, Canada.

Roch Tremblay (R)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Molecular Biology Programs, University of Montreal, Montréal, H3A 0G4, QC, Canada.

Oumaima Ahmed (O)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Molecular Biology Programs, University of Montreal, Montréal, H3A 0G4, QC, Canada.

Clémence Messmer (C)

Department of Biochemistry and Molecular Medicine, University of Montréal, H3C 3J7, Montreal, QC, Canada.
Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.

Nazar Mashtalir (N)

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.

Haithem Barbour (H)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Biomedical Sciences Programs, University of Montréal, Montréal, H3C 3T5, QC, Canada.

Louis Masclef (L)

Department of Biochemistry and Molecular Medicine, University of Montréal, H3C 3J7, Montreal, QC, Canada.
Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.

Marion Voide (M)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Molecular Biology Programs, University of Montreal, Montréal, H3A 0G4, QC, Canada.

Claire Viallard (C)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

Salima Daou (S)

Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.

Djaileb Abdelhadi (D)

Department of Biochemistry and Molecular Medicine, University of Montréal, H3C 3J7, Montreal, QC, Canada.
Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.

Daryl Ronato (D)

CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada.
Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.

Mohammadjavad Paydar (M)

Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, H3T 1J4, Canada.

Anaïs Darracq (A)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Molecular Biology Programs, University of Montreal, Montréal, H3A 0G4, QC, Canada.

Karine Boulay (K)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

Nicolas Desjardins-Lecavalier (N)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.

Przemyslaw Sapieha (P)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Ophthalmology, University of Montréal, Montréal, QC, Canada.
Department of Neurology-Neurosurgery, McGill University, Montréal, QC, Canada.

Jean-Yves Masson (JY)

CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada.
Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.

Mikhail Sergeev (M)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

Benjamin H Kwok (BH)

Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.
Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, H3T 1J4, Canada.

Laura Hulea (L)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

Frédérick A Mallette (FA)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

Eric Milot (E)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

Bruno Larrivée (B)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

Hugo Wurtele (H)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada.

El Bachir Affar (EB)

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada. el.bachir.affar@umontreal.ca.
Department of Medicine, University of Montréal, Montréal, H3C 3J7, QC, Canada. el.bachir.affar@umontreal.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH