Roles of ESCRT Proteins ALIX and CHMP4A and Their Interplay with Interferon-Stimulated Gene 15 during Tick-Borne Flavivirus Infection.
Animals
Calcium-Binding Proteins
/ metabolism
Cell Cycle Proteins
/ metabolism
Cell Line
Cells, Cultured
Cytokines
/ metabolism
Endosomal Sorting Complexes Required for Transport
/ metabolism
Flavivirus
/ physiology
Flavivirus Infections
/ metabolism
Host-Pathogen Interactions
Humans
Models, Biological
Proteolysis
Ticks
/ virology
Ubiquitins
/ metabolism
Virus Replication
ALIX
CHMP4A
ESCRT
HERC5
ISG15
NS3
TSG101
assembly
envelope
replication
replicons
tick-borne flaviviruses
virus late domain
Journal
Journal of virology
ISSN: 1098-5514
Titre abrégé: J Virol
Pays: United States
ID NLM: 0113724
Informations de publication
Date de publication:
09 02 2022
09 02 2022
Historique:
pubmed:
2
12
2021
medline:
1
3
2022
entrez:
1
12
2021
Statut:
ppublish
Résumé
Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle.
Identifiants
pubmed: 34851141
doi: 10.1128/JVI.01624-21
pmc: PMC8826915
doi:
Substances chimiques
CHMP4A protein, human
0
Calcium-Binding Proteins
0
Cell Cycle Proteins
0
Cytokines
0
Endosomal Sorting Complexes Required for Transport
0
PDCD6IP protein, human
0
Ubiquitins
0
ISG15 protein, human
60267-61-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0162421Références
J Biol Chem. 2007 Mar 23;282(12):8873-82
pubmed: 17276984
Adv Virol. 2009 Jan 1;2009:6239691-6239699
pubmed: 19865606
Cell Host Microbe. 2019 Nov 13;26(5):606-622.e8
pubmed: 31631053
J Virol. 2015 Apr;89(7):3455-70
pubmed: 25568208
Cell. 2007 Mar 9;128(5):841-52
pubmed: 17350572
J Virol. 2001 Nov;75(22):10787-99
pubmed: 11602720
Mol Cell Biol. 2004 Nov;24(21):9592-600
pubmed: 15485925
Retrovirology. 2014 Apr 03;11:27
pubmed: 24693865
Virology. 2004 Oct 25;328(2):208-18
pubmed: 15464841
Semin Cell Dev Biol. 2010 Jul;21(5):479-85
pubmed: 20223290
J Virol. 1997 Sep;71(9):6650-61
pubmed: 9261387
Nature. 1956 Sep 15;178(4533):581-2
pubmed: 13369466
Viruses. 2021 Jun 22;13(7):
pubmed: 34206552
J Biol Chem. 2008 Aug 29;283(35):23895-902
pubmed: 18583345
Nat Rev Microbiol. 2011 Jun 16;9(7):519-31
pubmed: 21677686
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7687-91
pubmed: 18511562
mBio. 2019 Oct 29;10(5):
pubmed: 31662457
J Virol. 1997 Nov;71(11):8475-81
pubmed: 9343204
J Gen Virol. 1989 Jan;70 ( Pt 1):37-43
pubmed: 2543738
Microbes Infect. 2011 Jan;13(1):85-95
pubmed: 21044891
Crit Rev Biochem Mol Biol. 2010 Dec;45(6):463-87
pubmed: 20653365
Nat Commun. 2016 Nov 24;7:13588
pubmed: 27882925
J Infect Dis. 2015 Oct 1;212 Suppl 2:S138-45
pubmed: 25786915
PLoS Pathog. 2011 Oct;7(10):e1002322
pubmed: 22028657
J Virol. 2008 Apr;82(7):3342-52
pubmed: 18199634
Nat Rev Microbiol. 2018 Jul;16(7):423-439
pubmed: 29769653
J Virol. 2007 May;81(9):4895-9
pubmed: 17301151
J Virol. 2006 May;80(9):4623-32
pubmed: 16611922
Biochem Biophys Res Commun. 2006 Dec 15;351(2):540-6
pubmed: 17069755
Curr Opin Cell Biol. 2019 Aug;59:121-132
pubmed: 31132588
Nat Struct Mol Biol. 2007 Mar;14(3):194-9
pubmed: 17277784
PLoS One. 2014 Jan 20;9(1):e84040
pubmed: 24465392
Mol Cell. 2010 Jun 11;38(5):722-32
pubmed: 20542004
Antiviral Res. 2003 Jan;57(1-2):129-46
pubmed: 12615309
Virol J. 2011 Oct 13;8:468
pubmed: 21992229
J Virol. 1991 May;65(5):2467-75
pubmed: 2016768
J Virol. 1999 Nov;73(11):9555-67
pubmed: 10516064
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Feb 1;62(Pt 2):157-62
pubmed: 16511290
Cell Host Microbe. 2013 Nov 13;14(5):510-21
pubmed: 24237697
Biochem Biophys Res Commun. 2014 May 23;448(1):95-100
pubmed: 24769207
J Virol. 1992 Mar;66(3):1535-42
pubmed: 1531368
J Biol Chem. 2006 Feb 17;281(7):4334-8
pubmed: 16407192
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7578-82
pubmed: 15131269
Annu Rev Virol. 2019 Sep 29;6(1):567-584
pubmed: 31283436
Curr Opin Virol. 2014 Dec;9:134-42
pubmed: 25462445
Virology. 1994 Nov 1;204(2):526-40
pubmed: 7941319
Virus Res. 2012 Oct;169(1):54-62
pubmed: 22796133
Ocul Surf. 2019 Jul;17(3):551-559
pubmed: 30905842
J Virol. 2011 Jan;85(1):632-7
pubmed: 20962096
Cell Rep. 2016 Aug 30;16(9):2339-47
pubmed: 27545892
J Virol. 1998 Jan;72(1):73-83
pubmed: 9420202