Diffusion Tensor Imaging Correlates of Resilience Following Adolescent Traumatic Brain Injury.


Journal

Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology
ISSN: 1543-3641
Titre abrégé: Cogn Behav Neurol
Pays: United States
ID NLM: 101167278

Informations de publication

Date de publication:
02 12 2021
Historique:
received: 22 11 2019
accepted: 25 11 2020
entrez: 1 12 2021
pubmed: 2 12 2021
medline: 27 1 2022
Statut: epublish

Résumé

Traumatic brain injury (TBI) is associated with considerable mortality and morbidity in adolescents, but positive outcomes are possible. Resilience is the concept that some individuals flourish despite significant adversity. To determine if there is a relationship between resilience-promoting factors that are known to promote resilience and white matter (WM) microstructure 1 year after complicated mild TBI or moderate or severe TBI that is sustained by adolescents. We examined the relationship between performance on a self-report measure of resilience-promoting factors and WM integrity assessed by diffusion tensor imaging in a group of adolescents who had sustained either a TBI (n = 38) or an orthopedic injury (OI) (n = 23). Immediately following injury, the individuals with TBI and the OI controls had comparable levels of resilience-promoting factors; however, at 1 year post injury, the TBI group endorsed fewer resilience-promoting factors and exhibited WM disruption compared with the OI controls. The individuals with TBI who had more resilience-promoting factors at 1 year post injury exhibited increased WM integrity, but the OI controls did not. Findings were particularly strong for the following structures: anterior corona radiata, anterior limb of the internal capsule, and genu of the corpus callosum-structures that are implicated in social cognition and are frequently disrupted after TBI. Relationships were notable for caregiver and community-level resilience-promoting factors. The current findings are some of the first to indicate neurobiological evidence of previously noted buffering effects of resilience-promoting factors in individuals with TBI.

Sections du résumé

BACKGROUND
Traumatic brain injury (TBI) is associated with considerable mortality and morbidity in adolescents, but positive outcomes are possible. Resilience is the concept that some individuals flourish despite significant adversity.
OBJECTIVE
To determine if there is a relationship between resilience-promoting factors that are known to promote resilience and white matter (WM) microstructure 1 year after complicated mild TBI or moderate or severe TBI that is sustained by adolescents.
METHOD
We examined the relationship between performance on a self-report measure of resilience-promoting factors and WM integrity assessed by diffusion tensor imaging in a group of adolescents who had sustained either a TBI (n = 38) or an orthopedic injury (OI) (n = 23).
RESULTS
Immediately following injury, the individuals with TBI and the OI controls had comparable levels of resilience-promoting factors; however, at 1 year post injury, the TBI group endorsed fewer resilience-promoting factors and exhibited WM disruption compared with the OI controls. The individuals with TBI who had more resilience-promoting factors at 1 year post injury exhibited increased WM integrity, but the OI controls did not. Findings were particularly strong for the following structures: anterior corona radiata, anterior limb of the internal capsule, and genu of the corpus callosum-structures that are implicated in social cognition and are frequently disrupted after TBI. Relationships were notable for caregiver and community-level resilience-promoting factors.
CONCLUSION
The current findings are some of the first to indicate neurobiological evidence of previously noted buffering effects of resilience-promoting factors in individuals with TBI.

Identifiants

pubmed: 34851864
doi: 10.1097/WNN.0000000000000283
pii: 00146965-202112000-00002
pmc: PMC8647770
mid: NIHMS1743087
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

259-274

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS021889
Pays : United States

Informations de copyright

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

Déclaration de conflit d'intérêts

The authors declare no conflicts of interest.

Références

Anderson JLR, Sotiropoulos SN. 2016. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 125:1063–1078. doi:10.1016/j.neuroimage.2015.10.019
doi: 10.1016/j.neuroimage.2015.10.019
Anderson V, Beauchamp MH, Yeates KO, et al. 2013. Social competence at 6 months following childhood traumatic brain injury. J Int Neuropsychol Soc. 19:539–550. doi:10.1017/S1355617712001543
doi: 10.1017/S1355617712001543
Armstrong MI, Birnie-Lefcovitch S, Ungar MT. 2005. Pathways between social support, family well being, quality of parenting, and child resilience: what we know. J Child Fam Stud. 14:269–281. doi:10.1007/s10826-005-5054-4
doi: 10.1007/s10826-005-5054-4
Avants BB, Epstein CL, Grossman M, et al. 2008. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 12:26–41. doi:10.1016/j.media.2007.06.004
doi: 10.1016/j.media.2007.06.004
Avants BB, Tustison N, Song G. 2009. Advanced normalization tools (ANTs). Insight J. 2:1–35.
Avants BB, Tustison NJ, Song G, et al. 2011. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 54:2033–2044. doi:10.1016/j.neuroimage.2010.09.025
doi: 10.1016/j.neuroimage.2010.09.025
Avci G, Hanten G, Schmidt AT, et al. 2013. Cognitive contributors to resilience in youth from underserved populations: a brief report. J Public Ment Health. 12:165–170. doi:10.1108/JPMH-02-2013-0005
doi: 10.1108/JPMH-02-2013-0005
Batista S, Alves C, d’Almeida OC, et al. 2017. Disconnection as a mechanism for social cognition impairment in multiple sclerosis. Neurology. 89:38–45. doi:10.1212/WNL.0000000000004060
doi: 10.1212/WNL.0000000000004060
Benjamini Y, Hockberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 57:289–300.
Burt KB, Whelan R, Conrod PJ, et al. 2016. Structural brain correlates of adolescent resilience. J Child Psychol Psychiatry. 57:1287–1296. doi:10.1111/jcpp.12552
doi: 10.1111/jcpp.12552
Casey BJ, Galvan A, Hare TA. 2005. Changes in cerebral functional organization during cognitive development. Curr Opin Neurobiol. 15:239–244. doi:10.1016/j.conb.2005.03.012
doi: 10.1016/j.conb.2005.03.012
Casey BJ, Jones RM, Hare TA. 2008. The adolescent brain. Ann N Y Acad Sci. 1124:111–126. doi:10.1196/annals.1440.010
doi: 10.1196/annals.1440.010
Cheng Y, Chou KH, Chen IY, et al. 2010. Atypical development of white matter microstructure in adolescents with autism spectrum disorders. Neuroimage. 50:873–882. doi:10.1016/j.neuroimage.2010.01.011
doi: 10.1016/j.neuroimage.2010.01.011
Cicchetti D, Rogosch FA. 2009. Adaptive coping under conditions of extreme stress: multilevel influences on the determinants of resilience in maltreated children. Published online Summer 2009. New Dir Child Adolesc Dev. 2009:47–59. doi:10.1002/cd.242
doi: 10.1002/cd.242
Clausen F, Marklund N, Lewén A, et al. 2012. Interstitial F(2)-isoprostane 8-iso-PGF(2α) as a biomarker of oxidative stress after severe human traumatic brain injury. J Neurotrauma. 29:766–775. doi:10.1089/neu.2011.1754
doi: 10.1089/neu.2011.1754
Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York, New York: Lawrence Erlbaum Associates.
Dennis EL, Babikian T, Giza CC, et al. 2018. Neuroimaging of the injured pediatric brain: methods and new lessons. Neuroscientist. 24:652–670. doi:10.1177/1073858418759489
doi: 10.1177/1073858418759489
Elliott TR, Hsiao YY, Kimbrel NA, et al. 2015. Resilience, traumatic brain injury, depression and posttraumatic stress among Iraq/Afghanistan war veterans. Rehabil Psychol. 60:263–276. doi:10.1037/rep0000050
doi: 10.1037/rep0000050
Fay TB, Yeates KO, Wade SL, et al. 2009. Predicting longitudinal patterns of functional deficits in children with traumatic brain injury. Neuropsychology. 23:271–282. doi:10.1037/a0014936
doi: 10.1037/a0014936
Galinowski A, Miranda R, Lemaitre H, et al. 2015. Resilience and corpus callosum microstructure in adolescence. Psychol Med. 45:2285–2294. doi:10.1017/S0033291715000239
doi: 10.1017/S0033291715000239
Ganesalingam K, Sanson A, Anderson V, et al. 2006. Self-regulation and social and behavioral functioning following childhood traumatic brain injury. J Int Neuropsychol Soc. 12:609–621. doi:10.1017/S1355617706060796
doi: 10.1017/S1355617706060796
Grieve SM, Williams LM, Paul RH, et al. 2007. Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J Neuroradiol. 28:226–235.
Hanten G, Wilde EA, Menefee DS, et al. 2008. Correlates of social problem solving during the first year after traumatic brain injury in children. Neuropsychology. 22:357–370. doi:10.1037/0894-4105.22.3.357
doi: 10.1037/0894-4105.22.3.357
Holland JN, Schmidt AT. 2015. Static and dynamic factors promoting resilience following traumatic brain injury: a brief review. Published online August 4. Neural Plast. 2015:902802. doi:10.1155/2015/902802
doi: 10.1155/2015/902802
Hunter JV, Wilde EA, Tong KA, et al. 2012. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma. 29:654–671. doi:10.1089/neu.2011.1906
doi: 10.1089/neu.2011.1906
Jahanshad N, Kochunov PV, Sprooten E, et al. 2013. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage. 81:455–469. doi:10.1016/j.neuroimage.2013.04.061
doi: 10.1016/j.neuroimage.2013.04.061
Johnson NF, Kim C, Gold BT. 2013. Socioeconomic status is positively correlated with frontal white matter integrity in aging. Age (Dordr). 35:2045–2056. doi:10.1007/s11357-012-9493-8
doi: 10.1007/s11357-012-9493-8
Kalisch R, Müller MB, Tüscher O. 2015. Advancing empirical resilience research. Published online September 2. Behav Brain Sci. 38:e128. doi:10.1017/S0140525X15000023
doi: 10.1017/S0140525X15000023
Kraus JF Broman SH, Michel ME. 1995. Epidemiological features of brain injury in children: occurrence, children at risk, causes and manner of injury, severity, and outcomes. Traumatic Head Injury in Children. New York, New York: Oxford; 22–39.
Kreber LA, Griesbach GS. 2016. The interplay between neuropathology and activity based rehabilitation after traumatic brain injury. Brain Res. 1640:152–163. doi:10.1016/j.brainres.2016.01.016
doi: 10.1016/j.brainres.2016.01.016
Langlois JA, Kegler SR, Butler JA, et al. 2003. Traumatic brain injury-related hospital discharges. Results from a 14-state surveillance system, 1997. MMWR Surveill Summ. 52:1–20.
Levin HS, Hanten G. 2005. Executive functions after traumatic brain injury in children. Pediatr Neurol. 33:79–93. doi:10.1016/j.pediatrneurol.2005.02.002
doi: 10.1016/j.pediatrneurol.2005.02.002
Levin HS, Hanten G, Zhang L, et al. 2004. Selective impairment of inhibition after TBI in children. J Clin Exp Neuropsychol. 26:589–597. doi:10.1080/13803390409609783
doi: 10.1080/13803390409609783
Levin HS, Wilde EA, Chu Z, et al. 2008. Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children. J Head Trauma Rehabil. 23:197–208. doi:10.1097/01.HTR.0000327252.54128.7c
doi: 10.1097/01.HTR.0000327252.54128.7c
Levin HS, Wilde EA, Hanten G, et al. 2011. Mental state attributions and diffusion tensor imaging after traumatic brain injury in children. Dev Neuropsychol. 36:273–287. doi:10.1080/87565641.2010.549885
doi: 10.1080/87565641.2010.549885
Losoi H, Silverberg ND, Wäljas M, et al. 2015. Resilience is associated with outcome from mild traumatic brain injury. J Neurotrauma. 32:942–949. doi:10.1089/neu.2014.3799
doi: 10.1089/neu.2014.3799
Martino J, Brogna C, Robles SG, et al. 2010. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex. 46:691–699. doi:10.1016/j.cortex.2009.07.015
doi: 10.1016/j.cortex.2009.07.015
Masten AS. 2001. Ordinary magic: resilience processes in development. Am Psychol. 56:227–238. doi:10.1037/0003-066X.56.3.227
doi: 10.1037/0003-066X.56.3.227
Masten AS, Hubbard JJ, Gest SD, et al. 1999. Competence in the context of adversity: pathways to resilience and maladaptation from childhood to late adolescence. Dev Psychopathol. 11:143–169. doi:10.1017/s0954579499001996
doi: 10.1017/s0954579499001996
Max JE, Wilde EA, Bigler ED, et al. 2012. Psychiatric disorders after pediatric traumatic brain injury: a prospective, longitudinal, controlled study. J Neuropsychiatry Clin Neurosci. 24:427–436. doi:10.1176/appi.neuropsych.12060149
doi: 10.1176/appi.neuropsych.12060149
McCauley SR, Wilde EA, Miller ER, et al. 2013. Preinjury resilience and mood as predictors of early outcome following mild traumatic brain injury. J Neurotrauma. 30:642–652. doi:10.1089/neu.2012.2393
doi: 10.1089/neu.2012.2393
McDonald S, Rushby JA, Dalton KI, et al. 2018. The role of abnormalities in the corpus callosum in social cognition deficits after traumatic brain injury. Soc Neurosci. 13:471–479. doi:10.1080/17470919.2017.1356370
doi: 10.1080/17470919.2017.1356370
Micklewright JL, King TZ, O’Toole K, et al. 2012. Parental distress, parenting practices, and child adaptive outcomes following traumatic brain injury. J Int Neuropsychol Soc. 18:343–350. doi:10.1017/S1355617711001792
doi: 10.1017/S1355617711001792
Mike A, Strammer E, Aradi M, et al. 2013. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study. Published online December 13. PLoS One. 8:e82422. doi:10.1371/journal.pone.0082422
doi: 10.1371/journal.pone.0082422
Pineda RG, Neil J, Dierker D, et al. 2014. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J Pediatr. 164:52–60. doi:10.1016/j.peds.2013.08.047
doi: 10.1016/j.peds.2013.08.047
Potter JL, Wade SL, Walz NC, et al. 2011. Parenting style is related to executive dysfunction after brain injury in children. Rehabil Psychol. 56:351–358. doi:10.1037/a0025445
doi: 10.1037/a0025445
Radoeva PD, Coman IL, Antshel KM, et al. 2012. Atlas-based white matter analysis in individuals with velo-cardio-facial syndrome (22q11.2 deletion syndrome) and unaffected siblings. Published online August 1. Behav Brain Funct. 8:38. doi:10.1186/1744-9081-8-38
doi: 10.1186/1744-9081-8-38
Raikes AC, Bajaj S, Dailey NS, et al. 2018. Diffusion tensor imaging (DTI) correlates of self-reported sleep quality and depression following mild traumatic brain injury. Published online June 20. Front Neurol. 9:468. doi:10.3389/fneur.2018.00468
doi: 10.3389/fneur.2018.00468
Raj SP, Wade SL, Cassedy A, et al. 2014. Parent psychological functioning and communication predict externalizing behavior problems after pediatric traumatic brain injury. J Pediatr Psychol. 39:84–95. doi:10.1093/jpepsy/jst075
doi: 10.1093/jpepsy/jst075
Rosema S, Crowe L, Anderson V. 2012. Social function in adolescents after traumatic brain injury: a systematic review 1989–2011. J Neurotrauma. 29:1277–1291. doi:10.1089/neu.2011.2144
doi: 10.1089/neu.2011.2144
Ryan NP, Catroppa C, Godfrey C, et al. 2016a. Social dysfunction after pediatric traumatic brain injury: a translational perspective. Neurosci Biobehav Rev. 64:196–214. doi:10.1016/j.neubiorev.2016.02.020
doi: 10.1016/j.neubiorev.2016.02.020
Ryan NP, van Bijnen L, Catroppa C, et al. 2016b. Longitudinal outcome and recovery of social problems after pediatric traumatic brain injury (TBI): contribution of brain insult and family environment. Int J Dev Neurosci. 49:23–30. doi:10.1016/j.ijdevneu.2015.12.004
doi: 10.1016/j.ijdevneu.2015.12.004
Ryan NP, Genc S, Beauchamp MH, et al. 2018. White matter microstructure predicts longitudinal social cognitive outcomes after paediatric traumatic brain injury: a diffusion tensor imaging study. Psychol Med. 48:679–691. doi:10.1017/S0033291717002057
doi: 10.1017/S0033291717002057
Schmidt AT, Hanten GR, Li X, et al. 2010a. Emotion recognition following pediatric traumatic brain injury: longitudinal analysis of emotional prosody and facial emotion recognition. Neuropsychologia. 48:2869–2877. doi:10.1016/j.neuropsychologia.2010.05.029
doi: 10.1016/j.neuropsychologia.2010.05.029
Schmidt A, Martin R, Ozturk A, et al. 2010b. Neuroimaging and neuropsychological follow-up study in a pediatric brain tumor patient treated with surgery and radiation. Neurocase. 16:74–90. doi:10.1080/13554790903329133
doi: 10.1080/13554790903329133
Schmidt AT, Orsten KD, Hanten GR, et al. 2010c. Family environment influences emotion recognition following paediatric traumatic brain injury. Brain Inj. 24:1550–1560. doi:10.3109/02699052.2010.523047
doi: 10.3109/02699052.2010.523047
Schmidt AT, Hanten GR, Li X, et al. 2012. Decision making after pediatric brain injury: trajectory of recovery and relationship to age and gender. Int J Dev Neurosci. 30:225–230. doi:10.1016/j.ijdevneu.2011.11.003
doi: 10.1016/j.ijdevneu.2011.11.003
Schmidt AT, Hanten G, Avci G, et al. 2013a. Relating resilience factors and decision-making skills in two groups of underserved adolescents: implications for intervention. J Juv Justice. 2:69–75.
Schmidt AT, Hanten G, Li X, et al. 2013b. Emotional prosody and diffusion tensor imaging in children after traumatic brain injury. Brain Inj. 27:1528–1535. doi:10.3109/02699052.2013.828851
doi: 10.3109/02699052.2013.828851
Schmidt A, Beers S, Levin H Albright L, Pollack EF, Adelson PD. 2014. Rehabilitation and outcome of head injuries. Principles and Practice of Pediatric Neurosurgery. New York, New York: Thieme Medical; 737–749.
Schönberger M, Ponsford J, Olver J, et al. 2010. A longitudinal study of family functioning after TBI and relatives’ emotional status. Neuropsychol Rehabil. 20:813–829. doi:10.1080/09602011003620077
doi: 10.1080/09602011003620077
Smith SM, Jenkinson M, Johansen-Berg H, et al. 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 31:1487–1505. doi:10.1016/j.neuroimage.2006.02.024
doi: 10.1016/j.neuroimage.2006.02.024
Srinivas R, Brown SD, Chang YF, et al. 2010. Endocrine function in children acutely following severe traumatic brain injury. Childs Nerv Syst. 26:647–653. doi:10.1007/s00381-009-1038-9
doi: 10.1007/s00381-009-1038-9
Steinberg L. 2004. Risk taking in adolescence: What changes, and why? Ann N Y Acad Sci. 1021:51–58. doi:10.1196/annals.1308.005
doi: 10.1196/annals.1308.005
Steinberg L. 2008. A social neuroscience perspective on adolescent risk-taking. Dev Rev. 28:78–106. doi:10.1016/j.dr.2007.08.002
doi: 10.1016/j.dr.2007.08.002
Steinberg L. 2010. A dual systems model of adolescent risk-taking. Dev Psychobiol. 52:216–224. doi:10.1002/dev.20445
doi: 10.1002/dev.20445
Teasdale G, Jennett B. 1974. Assessment of coma and impaired consciousness. A practical scale. Lancet. 2:81–84. doi:10.1016/S0140-6736(74)91639-0
doi: 10.1016/S0140-6736(74)91639-0
Terry DP, Mewborn CM, Miller LS. 2019. Repeated sport-related concussion shows only minimal white matter differences many years after playing high school football. J Int Neuropsychol Soc. 25:950–960. doi:10.1017/S1355617719000754
doi: 10.1017/S1355617719000754
Tonks J, Yates P, Frampton I, et al. 2011. Resilience and the mediating effects of executive dysfunction after childhood brain injury: a comparison between children aged 9–15 years with brain injury and non-injured controls. Brain Inj. 25:870–881. doi:10.3109/02699052.2011.581641
doi: 10.3109/02699052.2011.581641
Tukey J. 1977. Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley.
Tustison NJ, Cook PA, Klein A, et al. 2014. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage. 99:166–179. doi:10.1016/j.neuroimage.2014.05.044
doi: 10.1016/j.neuroimage.2014.05.044
Ungar M. 2004. The importance of parents and other caregivers to the resilience of high-risk adolescents. Fam Process. 43:23–41. doi:10.111/j.1545-5300.2004.04301004.x
doi: 10.111/j.1545-5300.2004.04301004.x
Ungar M. 2008. Resilience across cultures. Br J Soc Work. 38:218–235. doi:10.1093/bjsw/bcl343
doi: 10.1093/bjsw/bcl343
Ungar M, Lienbenberg L. 2011. Assessing resilience across cultures using mixed methods: construction of the child and youth resilience measure. J Mix Methods Res. 5:126–149. doi:10.1177/1558689811400607
doi: 10.1177/1558689811400607
van der Werff SJ, Pannekoek JN, Stein DJ, et al. 2013. Neuroimaging of resilience to stress: current state of affairs. Hum Psychopharmacol. 28:529–532. doi:10.1002/hup.2336
doi: 10.1002/hup.2336
Wade SJ, Cassedy A, Walz NC, et al. 2011. The relationship of parental warm responsiveness and negativity to emerging behavior problems following traumatic brain injury in young children. Dev Psychol. 47:119–133. doi:10.1037/a0021028
doi: 10.1037/a0021028
Waugh CE, Wager TD, Fredrickson BL, et al. 2008. The neural correlates of trait resilience when anticipating and recovering from threat. Soc Cogn Affect Neurosci. 4:322–332. doi:10.1093/scan/nsn024
doi: 10.1093/scan/nsn024
Wechsler D. 2011. Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI–II). San Antonio, Texas: NCS Pearson.
Wilde EA, Chu Z, Bigler ED, et al. 2006. Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma. 23:1412–1426. doi:10.1089/neu.2006.23.1412
doi: 10.1089/neu.2006.23.1412
Yeates KO, Taylor HG, Drotar DD, et al. 1997. Pre-injury family environment as a determinant of recovery from traumatic brain injuries in school-age children. J Int Neuropsychol Soc. 3:617–630.
Yeates KO, Swift E, Taylor HG, et al. 2004. Short-and long-term social outcomes following pediatric traumatic brain injury. J Int Neuropsychol Soc. 10:412–426. doi:10.1017/S1355617704103093
doi: 10.1017/S1355617704103093
Yeates KO, Bigler ED, Dennis M, et al. 2007. Social outcomes in childhood brain disorder: a heuristic integration of social neuroscience and developmental psychology. Psychol Bull. 133:535–556. doi:10.1037/0033-2909.133.3.535
doi: 10.1037/0033-2909.133.3.535
Yeates KO, Taylor HG, Walz NC, et al. 2010. The family environment as a moderator of psychosocial outcomes following traumatic brain injury in young children. Neuropsychology. 24:345–356. doi:10.1037/a0018387
doi: 10.1037/a0018387
Yin B, Li DD, Huang H, et al. 2019. Longitudinal changes in diffusion tensor imaging following mild traumatic brain injury and correlation with outcome. Published online May 7. Front Neural Circuits. 13:28. doi:10.3389/fncir.2019.00028
doi: 10.3389/fncir.2019.00028

Auteurs

Adam T Schmidt (AT)

Department of Psychological Sciences, Texas Tech University Campus, Lubbock, Texas.

Hannah M Lindsey (HM)

Department of Neurology, University of Utah, Salt Lake City, Utah.

Emily Dennis (E)

Department of Neurology, University of Utah, Salt Lake City, Utah.

Elisabeth A Wilde (EA)

Department of Neurology, University of Utah, Salt Lake City, Utah.

Brian D Biekman (BD)

Departments of Physical Medicine and Rehabilitation.

Zili D Chu (ZD)

Departments of Physical Medicine and Rehabilitation.

Gerri R Hanten (GR)

Departments of Physical Medicine and Rehabilitation.

Dana L Formon (DL)

Colorado Department of Human Services, Office of Behavioral Health, Court Services Division, Denver, Colorado.

Matthew S Spruiell (MS)

Departments of Physical Medicine and Rehabilitation.

Jill V Hunter (JV)

Radiology, Baylor College of Medicine, Houston, Texas.
Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas.

Harvey S Levin (HS)

Departments of Physical Medicine and Rehabilitation.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH