Antigen-presenting innate lymphoid cells orchestrate neuroinflammation.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
12 2021
Historique:
received: 11 10 2019
accepted: 14 10 2021
pubmed: 3 12 2021
medline: 20 4 2022
entrez: 2 12 2021
Statut: ppublish

Résumé

Pro-inflammatory T cells in the central nervous system (CNS) are causally associated with multiple demyelinating and neurodegenerative diseases

Identifiants

pubmed: 34853467
doi: 10.1038/s41586-021-04136-4
pii: 10.1038/s41586-021-04136-4
pmc: PMC8702489
mid: NIHMS1756785
doi:

Substances chimiques

Antigens 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

707-712

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI162936
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA249274
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI145989
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI123368
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK126871
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI143842
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI095608
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Ota, K. et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183–187 (1990).
pubmed: 1694970 doi: 10.1038/346183a0
Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).
pubmed: 26250739 doi: 10.1038/nri3871
Togo, T. et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).
pubmed: 11958825 doi: 10.1016/S0165-5728(01)00496-9
Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).
pubmed: 12897209 pmcid: 166296 doi: 10.1172/JCI200318104
Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).
pubmed: 28636593 pmcid: 5626019 doi: 10.1038/nature22815
Lindestam Arlehamn, C. S. et al. alpha-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020).
pubmed: 32313102 pmcid: 7171193 doi: 10.1038/s41467-020-15626-w
Lincoln, M. R. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat. Genet. 37, 1108–1112 (2005).
pubmed: 16186814 doi: 10.1038/ng1647
Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785 (2010).
pubmed: 20711177 pmcid: 2930111 doi: 10.1038/ng.642
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256 pmcid: 6836675 doi: 10.1038/s41588-018-0311-9
Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).
pubmed: 25064009 pmcid: 4146673 doi: 10.1038/ng.3043
Fallis, R. J., Raine, C. S. & McFarlin, D. E. Chronic relapsing experimental allergic encephalomyelitis in SJL mice following the adoptive transfer of an epitope-specific T cell line. J. Neuroimmunol. 22, 93–105 (1989).
pubmed: 2466872 doi: 10.1016/0165-5728(89)90039-8
Brochard, V. et al. Infiltration of CD4
pubmed: 19104149
Browne, T. C. et al. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J. Immunol. 190, 2241–2251 (2013).
pubmed: 23365075 doi: 10.4049/jimmunol.1200947
Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019).
pubmed: 30787438 doi: 10.1038/s41586-019-0964-2
Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).
pubmed: 31270459 pmcid: 7111535 doi: 10.1038/s41586-019-1362-5
Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).
pubmed: 30142344 doi: 10.1016/j.cell.2018.07.017
Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019).
pubmed: 31350531 pmcid: 6982279 doi: 10.1038/s41577-019-0194-8
Mair, F. & Becher, B. Thy1
pubmed: 24105463 doi: 10.1002/eji.201343653
Hatfield, J. K. & Brown, M. A. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell. Immunol. 297, 69–79 (2015).
pubmed: 26163773 doi: 10.1016/j.cellimm.2015.06.006
Kwong, B. et al. T-bet-dependent NKp46
pubmed: 28805812 pmcid: 5605431 doi: 10.1038/ni.3816
Yamano, T. et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J. Exp. Med. 216, 1027–1037 (2019).
pubmed: 30918005 pmcid: 6504225 doi: 10.1084/jem.20181430
Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).
pubmed: 26472762 pmcid: 4720139 doi: 10.1126/science.aac9593
Takeshita, Y. & Ransohoff, R. M. Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models. Immunol. Rev. 248, 228–239 (2012).
pubmed: 22725965 pmcid: 3383666 doi: 10.1111/j.1600-065X.2012.01127.x
Perry, J. S. et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106 (2012).
pubmed: 22855463 doi: 10.1126/scitranslmed.3004140
Lin, Y. C. et al. Daclizumab reverses intrathecal immune cell abnormalities in multiple sclerosis. Ann. Clin. Transl. Neurol. 2, 445–455 (2015).
pubmed: 26000318 pmcid: 4435700 doi: 10.1002/acn3.181
Degn, M. et al. Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis. Mult. Scler. 22, 1013–1020 (2016).
pubmed: 26453677 doi: 10.1177/1352458515609795
Serafini, B. et al. RORγt expression and lymphoid neogenesis in the brain of patients with secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 75, 877–888 (2016).
pubmed: 27413074 doi: 10.1093/jnen/nlw063
Hepworth, M. R. et al. Innate lymphoid cells regulate CD4
pubmed: 23698371 pmcid: 3699860 doi: 10.1038/nature12240
Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4
pubmed: 25908663 pmcid: 4449822 doi: 10.1126/science.aaa4812
von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc. Natl Acad. Sci. USA 111, 12835–12840 (2014).
doi: 10.1073/pnas.1406908111
Ting, J. P. & Trowsdale, J. Genetic control of MHC class II expression. Cell 109, S21–S33, (2002).
pubmed: 11983150 doi: 10.1016/S0092-8674(02)00696-7
Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).
pubmed: 14525967 doi: 10.1189/jlb.0603252
Bryant, P. W., Lennon-Dumenil, A. M., Fiebiger, E., Lagaudriere-Gesbert, C. & Ploegh, H. L. Proteolysis and antigen presentation by MHC class II molecules. Adv. Immunol. 80, 71–114 (2002).
pubmed: 12078484 pmcid: 7130937 doi: 10.1016/S0065-2776(02)80013-X
Zhang, Q. & Vignali, D. A. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44, 1034–1051 (2016).
pubmed: 27192568 pmcid: 4873959 doi: 10.1016/j.immuni.2016.04.017
Lee, J. Y. et al. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 180, 79–91 (2020).
pubmed: 31866067 doi: 10.1016/j.cell.2019.11.026
Koda, T. et al. Sema4A is implicated in the acceleration of Th17 cell-mediated neuroinflammation in the effector phase. J. Neuroinflammation 17, 82 (2020).
pubmed: 32169103 pmcid: 7068964 doi: 10.1186/s12974-020-01757-w
Hur, E. M. et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol. 8, 74–83 (2007).
pubmed: 17143274 doi: 10.1038/ni1415
Giles, D. A., Duncker, P. C., Wilkinson, N. M., Washnock-Schmid, J. M. & Segal, B. M. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J. Clin. Invest. 128, 5322–5334 (2018).
pubmed: 30226829 pmcid: 6264723 doi: 10.1172/JCI123708
Mundt, S. et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci. Immunol. 4, eaau8380 (2019).
pubmed: 30679199 doi: 10.1126/sciimmunol.aau8380
Korn, T. & Kallies, A. T cell responses in the central nervous system. Nat. Rev. Immunol. 17, 179–194 (2017).
pubmed: 28138136 doi: 10.1038/nri.2016.144
Waisman, A. & Johann, L. Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J. Mol. Med. 96, 1279–1292 (2018).
pubmed: 30386908 doi: 10.1007/s00109-018-1709-7
Frommer, F. et al. Tolerance without clonal expansion: self-antigen-expressing B cells program self-reactive T cells for future deletion. J. Immunol. 181, 5748–5759 (2008).
pubmed: 18832734 doi: 10.4049/jimmunol.181.8.5748
Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).
pubmed: 20393462 pmcid: 3796764 doi: 10.1038/nature08949
Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1
pubmed: 25531830 doi: 10.1038/ni.3078
Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018).
pubmed: 29302015 pmcid: 6956613 doi: 10.1126/science.aam5809
Montaldo, E. et al. Human RORγt
pubmed: 25500367 doi: 10.1016/j.immuni.2014.11.010
Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100 (2017).
pubmed: 28283063 doi: 10.1016/j.cell.2017.02.021
Scoville, S. D. et al. A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets. Immunity 44, 1140–1150 (2016).
pubmed: 27178467 pmcid: 4893782 doi: 10.1016/j.immuni.2016.04.007
Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).
pubmed: 30679343 doi: 10.1126/science.aat7554
Hashimoto, K., Joshi, S. K. & Koni, P. A. A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis 32, 152–153 (2002).
pubmed: 11857806 doi: 10.1002/gene.10056
Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).
pubmed: 12732654 pmcid: 2193967 doi: 10.1084/jem.20021603
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol 1, 4 (2001).
pubmed: 11299042 pmcid: 31338 doi: 10.1186/1471-213X-1-4
Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).
pubmed: 11728338 doi: 10.1016/S1074-7613(01)00227-8
Dobes, J. et al. A novel conditional Aire allele enables cell-specific ablation of the immune tolerance regulator Aire. Eur. J. Immunol. 48, 546–548 (2018).
pubmed: 29193031 doi: 10.1002/eji.201747267
Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).
pubmed: 21278737 pmcid: 3040235 doi: 10.1038/ni.1993
Ahlfors, H. et al. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J. Immunol. 193, 4602–4613 (2014).
pubmed: 25261485 doi: 10.4049/jimmunol.1401244
Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17
pubmed: 18504307 pmcid: 2413035 doi: 10.1084/jem.20080034
Croxford, A. L., Kurschus, F. C. & Waisman, A. Cutting edge: an IL-17F-Cre
pubmed: 19155467 doi: 10.4049/jimmunol.182.3.1237
Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).
pubmed: 21387374 pmcid: 3084507 doi: 10.1002/ana.22366
Miller, S. D., Karpus, W. J. & Davidson, T. S. Experimental autoimmune encephalomyelitis in the mouse. Curr. Protoc. Immunol. 88, 15.1.1–15.1.20 (2010).
doi: 10.1002/0471142735.im1501s88
Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).
pubmed: 22961052 pmcid: 3459594 doi: 10.1038/ni.2416
Kamran, P. et al. Parabiosis in mice: a detailed protocol. J. Vis. Exp. 80, e50556 (2013).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461
Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. Preprint at https://doi.org/10.1101/074161 (2016).
Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
pubmed: 24288368 doi: 10.1093/nar/gkt1244
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Louveau, A., Filiano, A. J. & Kipnis, J. Meningeal whole mount preparation and characterization of neural cells by flow cytometry. Curr. Protoc. Immunol. 121, e50 (2018).
pubmed: 30008983 pmcid: 6040815 doi: 10.1002/cpim.50

Auteurs

John B Grigg (JB)

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Arthi Shanmugavadivu (A)

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Tommy Regen (T)

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Christopher N Parkhurst (CN)

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Anees Ahmed (A)

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Ann M Joseph (AM)

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Michael Mazzucco (M)

Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Konrad Gronke (K)

Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany.

Andreas Diefenbach (A)

Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany.

Gerard Eberl (G)

Microenvironment and Immunity Unit, Institut Pasteur, Paris, France.

Timothy Vartanian (T)

Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Ari Waisman (A)

Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

Gregory F Sonnenberg (GF)

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA. gfsonnenberg@med.cornell.edu.
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA. gfsonnenberg@med.cornell.edu.
Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA. gfsonnenberg@med.cornell.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH