Antigen-presenting innate lymphoid cells orchestrate neuroinflammation.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
11
10
2019
accepted:
14
10
2021
pubmed:
3
12
2021
medline:
20
4
2022
entrez:
2
12
2021
Statut:
ppublish
Résumé
Pro-inflammatory T cells in the central nervous system (CNS) are causally associated with multiple demyelinating and neurodegenerative diseases
Identifiants
pubmed: 34853467
doi: 10.1038/s41586-021-04136-4
pii: 10.1038/s41586-021-04136-4
pmc: PMC8702489
mid: NIHMS1756785
doi:
Substances chimiques
Antigens
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
707-712Subventions
Organisme : NIAID NIH HHS
ID : R01 AI162936
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA249274
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI145989
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI123368
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK126871
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI143842
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI095608
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Ota, K. et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183–187 (1990).
pubmed: 1694970
doi: 10.1038/346183a0
Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).
pubmed: 26250739
doi: 10.1038/nri3871
Togo, T. et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).
pubmed: 11958825
doi: 10.1016/S0165-5728(01)00496-9
Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).
pubmed: 12897209
pmcid: 166296
doi: 10.1172/JCI200318104
Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).
pubmed: 28636593
pmcid: 5626019
doi: 10.1038/nature22815
Lindestam Arlehamn, C. S. et al. alpha-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020).
pubmed: 32313102
pmcid: 7171193
doi: 10.1038/s41467-020-15626-w
Lincoln, M. R. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat. Genet. 37, 1108–1112 (2005).
pubmed: 16186814
doi: 10.1038/ng1647
Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785 (2010).
pubmed: 20711177
pmcid: 2930111
doi: 10.1038/ng.642
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256
pmcid: 6836675
doi: 10.1038/s41588-018-0311-9
Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).
pubmed: 25064009
pmcid: 4146673
doi: 10.1038/ng.3043
Fallis, R. J., Raine, C. S. & McFarlin, D. E. Chronic relapsing experimental allergic encephalomyelitis in SJL mice following the adoptive transfer of an epitope-specific T cell line. J. Neuroimmunol. 22, 93–105 (1989).
pubmed: 2466872
doi: 10.1016/0165-5728(89)90039-8
Brochard, V. et al. Infiltration of CD4
pubmed: 19104149
Browne, T. C. et al. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J. Immunol. 190, 2241–2251 (2013).
pubmed: 23365075
doi: 10.4049/jimmunol.1200947
Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019).
pubmed: 30787438
doi: 10.1038/s41586-019-0964-2
Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).
pubmed: 31270459
pmcid: 7111535
doi: 10.1038/s41586-019-1362-5
Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).
pubmed: 30142344
doi: 10.1016/j.cell.2018.07.017
Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019).
pubmed: 31350531
pmcid: 6982279
doi: 10.1038/s41577-019-0194-8
Mair, F. & Becher, B. Thy1
pubmed: 24105463
doi: 10.1002/eji.201343653
Hatfield, J. K. & Brown, M. A. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell. Immunol. 297, 69–79 (2015).
pubmed: 26163773
doi: 10.1016/j.cellimm.2015.06.006
Kwong, B. et al. T-bet-dependent NKp46
pubmed: 28805812
pmcid: 5605431
doi: 10.1038/ni.3816
Yamano, T. et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J. Exp. Med. 216, 1027–1037 (2019).
pubmed: 30918005
pmcid: 6504225
doi: 10.1084/jem.20181430
Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).
pubmed: 26472762
pmcid: 4720139
doi: 10.1126/science.aac9593
Takeshita, Y. & Ransohoff, R. M. Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models. Immunol. Rev. 248, 228–239 (2012).
pubmed: 22725965
pmcid: 3383666
doi: 10.1111/j.1600-065X.2012.01127.x
Perry, J. S. et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106 (2012).
pubmed: 22855463
doi: 10.1126/scitranslmed.3004140
Lin, Y. C. et al. Daclizumab reverses intrathecal immune cell abnormalities in multiple sclerosis. Ann. Clin. Transl. Neurol. 2, 445–455 (2015).
pubmed: 26000318
pmcid: 4435700
doi: 10.1002/acn3.181
Degn, M. et al. Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis. Mult. Scler. 22, 1013–1020 (2016).
pubmed: 26453677
doi: 10.1177/1352458515609795
Serafini, B. et al. RORγt expression and lymphoid neogenesis in the brain of patients with secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 75, 877–888 (2016).
pubmed: 27413074
doi: 10.1093/jnen/nlw063
Hepworth, M. R. et al. Innate lymphoid cells regulate CD4
pubmed: 23698371
pmcid: 3699860
doi: 10.1038/nature12240
Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4
pubmed: 25908663
pmcid: 4449822
doi: 10.1126/science.aaa4812
von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc. Natl Acad. Sci. USA 111, 12835–12840 (2014).
doi: 10.1073/pnas.1406908111
Ting, J. P. & Trowsdale, J. Genetic control of MHC class II expression. Cell 109, S21–S33, (2002).
pubmed: 11983150
doi: 10.1016/S0092-8674(02)00696-7
Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).
pubmed: 14525967
doi: 10.1189/jlb.0603252
Bryant, P. W., Lennon-Dumenil, A. M., Fiebiger, E., Lagaudriere-Gesbert, C. & Ploegh, H. L. Proteolysis and antigen presentation by MHC class II molecules. Adv. Immunol. 80, 71–114 (2002).
pubmed: 12078484
pmcid: 7130937
doi: 10.1016/S0065-2776(02)80013-X
Zhang, Q. & Vignali, D. A. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44, 1034–1051 (2016).
pubmed: 27192568
pmcid: 4873959
doi: 10.1016/j.immuni.2016.04.017
Lee, J. Y. et al. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 180, 79–91 (2020).
pubmed: 31866067
doi: 10.1016/j.cell.2019.11.026
Koda, T. et al. Sema4A is implicated in the acceleration of Th17 cell-mediated neuroinflammation in the effector phase. J. Neuroinflammation 17, 82 (2020).
pubmed: 32169103
pmcid: 7068964
doi: 10.1186/s12974-020-01757-w
Hur, E. M. et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol. 8, 74–83 (2007).
pubmed: 17143274
doi: 10.1038/ni1415
Giles, D. A., Duncker, P. C., Wilkinson, N. M., Washnock-Schmid, J. M. & Segal, B. M. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J. Clin. Invest. 128, 5322–5334 (2018).
pubmed: 30226829
pmcid: 6264723
doi: 10.1172/JCI123708
Mundt, S. et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci. Immunol. 4, eaau8380 (2019).
pubmed: 30679199
doi: 10.1126/sciimmunol.aau8380
Korn, T. & Kallies, A. T cell responses in the central nervous system. Nat. Rev. Immunol. 17, 179–194 (2017).
pubmed: 28138136
doi: 10.1038/nri.2016.144
Waisman, A. & Johann, L. Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J. Mol. Med. 96, 1279–1292 (2018).
pubmed: 30386908
doi: 10.1007/s00109-018-1709-7
Frommer, F. et al. Tolerance without clonal expansion: self-antigen-expressing B cells program self-reactive T cells for future deletion. J. Immunol. 181, 5748–5759 (2008).
pubmed: 18832734
doi: 10.4049/jimmunol.181.8.5748
Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).
pubmed: 20393462
pmcid: 3796764
doi: 10.1038/nature08949
Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1
pubmed: 25531830
doi: 10.1038/ni.3078
Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018).
pubmed: 29302015
pmcid: 6956613
doi: 10.1126/science.aam5809
Montaldo, E. et al. Human RORγt
pubmed: 25500367
doi: 10.1016/j.immuni.2014.11.010
Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100 (2017).
pubmed: 28283063
doi: 10.1016/j.cell.2017.02.021
Scoville, S. D. et al. A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets. Immunity 44, 1140–1150 (2016).
pubmed: 27178467
pmcid: 4893782
doi: 10.1016/j.immuni.2016.04.007
Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).
pubmed: 30679343
doi: 10.1126/science.aat7554
Hashimoto, K., Joshi, S. K. & Koni, P. A. A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis 32, 152–153 (2002).
pubmed: 11857806
doi: 10.1002/gene.10056
Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).
pubmed: 12732654
pmcid: 2193967
doi: 10.1084/jem.20021603
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol 1, 4 (2001).
pubmed: 11299042
pmcid: 31338
doi: 10.1186/1471-213X-1-4
Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).
pubmed: 11728338
doi: 10.1016/S1074-7613(01)00227-8
Dobes, J. et al. A novel conditional Aire allele enables cell-specific ablation of the immune tolerance regulator Aire. Eur. J. Immunol. 48, 546–548 (2018).
pubmed: 29193031
doi: 10.1002/eji.201747267
Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).
pubmed: 21278737
pmcid: 3040235
doi: 10.1038/ni.1993
Ahlfors, H. et al. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J. Immunol. 193, 4602–4613 (2014).
pubmed: 25261485
doi: 10.4049/jimmunol.1401244
Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17
pubmed: 18504307
pmcid: 2413035
doi: 10.1084/jem.20080034
Croxford, A. L., Kurschus, F. C. & Waisman, A. Cutting edge: an IL-17F-Cre
pubmed: 19155467
doi: 10.4049/jimmunol.182.3.1237
Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).
pubmed: 21387374
pmcid: 3084507
doi: 10.1002/ana.22366
Miller, S. D., Karpus, W. J. & Davidson, T. S. Experimental autoimmune encephalomyelitis in the mouse. Curr. Protoc. Immunol. 88, 15.1.1–15.1.20 (2010).
doi: 10.1002/0471142735.im1501s88
Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).
pubmed: 22961052
pmcid: 3459594
doi: 10.1038/ni.2416
Kamran, P. et al. Parabiosis in mice: a detailed protocol. J. Vis. Exp. 80, e50556 (2013).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691
doi: 10.1093/bioinformatics/btq461
Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. Preprint at https://doi.org/10.1101/074161 (2016).
Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
pubmed: 24288368
doi: 10.1093/nar/gkt1244
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Louveau, A., Filiano, A. J. & Kipnis, J. Meningeal whole mount preparation and characterization of neural cells by flow cytometry. Curr. Protoc. Immunol. 121, e50 (2018).
pubmed: 30008983
pmcid: 6040815
doi: 10.1002/cpim.50