The Effect of Size and Asymmetry at Birth on Brain Injury and Neurodevelopmental Outcomes in Congenital Heart Disease.


Journal

Pediatric cardiology
ISSN: 1432-1971
Titre abrégé: Pediatr Cardiol
Pays: United States
ID NLM: 8003849

Informations de publication

Date de publication:
Apr 2022
Historique:
received: 29 03 2021
accepted: 24 11 2021
pubmed: 3 12 2021
medline: 15 4 2022
entrez: 2 12 2021
Statut: ppublish

Résumé

Poor and asymmetric fetal growth have been associated with neonatal brain injury (BI) and worse neurodevelopmental outcomes (NDO) in the growth-restricted population due to placental insufficiency. We tested the hypothesis that postnatal markers of fetal growth (birthweight (BW), head circumference (HC), and head to body symmetry) are associated with preoperative white matter injury (WMI) and NDO in infants with single ventricle physiology (SVP) and d-transposition of great arteries (TGA). 173 term newborns (106 TGA; 67 SVP) at two sites had pre-operative brain MRI to assess for WMI and measures of microstructural brain development. NDO was assessed at 30 months with the Bayley Scale of Infant Development-II (n = 69). We tested the association between growth parameters at birth with the primary outcome of WMI on the pre-operative brain MRI. Secondary outcomes included measures of NDO. Newborns with TGA were more likely to have growth asymmetry with smaller heads relative to weight while SVP newborns were symmetrically small. There was no association between BW, HC or asymmetry and WMI on preoperative brain MRI or with measures of microstructural brain development. Similarly, growth parameters at birth were not associated with NDO at 30 months. In a multivariable model only cardiac lesion and site were associated with NDO. Unlike other high-risk infant populations, postnatal markers of fetal growth including head to body asymmetry that is common in TGA is not associated with brain injury or NDO. Lesion type appears to play a more important role in NDO in CHD.

Identifiants

pubmed: 34853878
doi: 10.1007/s00246-021-02798-5
pii: 10.1007/s00246-021-02798-5
pmc: PMC9005428
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

868-877

Subventions

Organisme : NIH HHS
ID : NS082330
Pays : United States
Organisme : NIH HHS
ID : HD07274
Pays : United States
Organisme : NIH HHS
ID : NS099422
Pays : United States
Organisme : NIH HHS
ID : NS063876
Pays : United States
Organisme : NCRR NIH HHS
ID : M01 RR001271
Pays : United States
Organisme : NIH HHS
ID : NS40117
Pays : United States
Organisme : NINDS NIH HHS
ID : P01 NS082330
Pays : United States
Organisme : NIH HHS
ID : EB009756
Pays : United States
Organisme : NCRR NIH HHS
ID : 5-M01-RR-01271
Pays : United States
Organisme : CIHR
ID : MOP93780
Pays : Canada
Organisme : NHLBI NIH HHS
ID : T32 HL007544
Pays : United States

Informations de copyright

© 2021. The Author(s).

Références

Miller SP, McQuillen PS, Hamrick S, Xu D, Glidden DV, Charlton N et al (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357(19):1928–1938. https://doi.org/10.1056/NEJMoa067393
doi: 10.1056/NEJMoa067393 pubmed: 17989385
Newburger JW, Sleeper LA, Bellinger DC, Goldberg CS, Tabbutt S, Lu M et al (2012) Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: the single ventricle reconstruction trial. Circulation 125(17):2081–2091. https://doi.org/10.1161/CIRCULATIONAHA.111.064113
doi: 10.1161/CIRCULATIONAHA.111.064113 pubmed: 22456475 pmcid: 3341507
Ravishankar C, Zak V, Williams IA, Bellinger DC, Gaynor JW, Ghanayem NS et al (2013) Association of impaired linear growth and worse neurodevelopmental outcome in infants with single ventricle physiology: a report from the pediatric heart network infant single ventricle trial. J Pediatr 162(2):250–256. https://doi.org/10.1016/j.jpeds.2012.07.048
doi: 10.1016/j.jpeds.2012.07.048 pubmed: 22939929
Hangge PT, Cnota JF, Woo JG, Hinton AC, Divanovic AA, Manning PB et al (2013) Microcephaly is associated with early adverse neurologic outcomes in hypoplastic left heart syndrome. Pediatr Res 74(1):61–67. https://doi.org/10.1038/pr.2013.61
doi: 10.1038/pr.2013.61 pubmed: 23575878
Miller TA, Zak V, Shrader P, Ravishankar C, Pemberton VL, Newburger JW et al (2016) Growth asymmetry, head circumference, and neurodevelopmental outcomes in infants with single ventricles. J Pediatr 168(220–5):e1. https://doi.org/10.1016/j.jpeds.2015.09.041
doi: 10.1016/j.jpeds.2015.09.041
Miller TA (2018) Growth in congenital heart disease: outcome or predictor? J Am Heart Assoc 7(17):e010262. https://doi.org/10.1161/JAHA.118.010262
doi: 10.1161/JAHA.118.010262 pubmed: 30371175 pmcid: 6201424
Miller TA, Ghanayem NS, Newburger JW, McCrindle BW, Hu C, DeWitt AG et al (2019) Gestational age, birth weight, and outcomes six years after the norwood procedure. Pediatrics. https://doi.org/10.1542/peds.2018-2577
doi: 10.1542/peds.2018-2577 pubmed: 31791285 pmcid: 6886221
Matthiesen NB, Henriksen TB, Gaynor JW, Agergaard P, Bach CC, Hjortdal VE et al (2016) Congenital heart defects and indices of fetal cerebral growth in a Nationwide Cohort of 924 422 liveborn infants. Circulation 133(6):566–575. https://doi.org/10.1161/CIRCULATIONAHA.115.019089
doi: 10.1161/CIRCULATIONAHA.115.019089 pubmed: 26769743
Puri K, Warshak CR, Habli MA, Yuan A, Sahay RD, King EC et al (2018) Fetal somatic growth trajectory differs by type of congenital heart disease. Pediatr Res 83(3):669–676. https://doi.org/10.1038/pr.2017.275
doi: 10.1038/pr.2017.275 pubmed: 29261645
Turan S, Rosenbloom JI, Hussein M, Berg C, Gembruch U, Baschat AA et al (2017) Longitudinal analysis of head and somatic growth in fetuses with congenital heart defects. J Clin Ultrasound 45(2):96–104. https://doi.org/10.1002/jcu.22395
doi: 10.1002/jcu.22395 pubmed: 27619545
Prsa M, Sun L, van Amerom J, Yoo SJ, Grosse-Wortmann L, Jaeggi E et al (2014) Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging 7(4):663–670. https://doi.org/10.1161/CIRCIMAGING.113.001859
doi: 10.1161/CIRCIMAGING.113.001859 pubmed: 24874055
Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P et al (2015) Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131(15):1313–1323. https://doi.org/10.1161/CIRCULATIONAHA.114.013051
doi: 10.1161/CIRCULATIONAHA.114.013051 pubmed: 25762062 pmcid: 4398654
Wernovsky G, Licht DJ (2016) Neurodevelopmental outcomes in children with congenital heart disease-what can we impact? Pediatr Crit Care Med 17(8 Suppl 1):S232–S242. https://doi.org/10.1097/PCC.0000000000000800
doi: 10.1097/PCC.0000000000000800 pubmed: 27490605 pmcid: 4975480
Guellec I, Marret S, Baud O, Cambonie G, Lapillonne A, Roze JC et al (2015) Intrauterine growth restriction, head size at birth, and outcome in very preterm infants. J Pediatr 167(5):975–981. https://doi.org/10.1016/j.jpeds.2015.08.025
doi: 10.1016/j.jpeds.2015.08.025 pubmed: 26384436
Levine TA, Grunau RE, McAuliffe FM, Pinnamaneni R, Foran A, Alderdice FA (2015) Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics 135(1):126–141. https://doi.org/10.1542/peds.2014-1143
doi: 10.1542/peds.2014-1143 pubmed: 25548332
Sicard M, Nusinovici S, Hanf M, Muller JB, Guellec I, Ancel PY et al (2017) Fetal and postnatal head circumference growth: synergetic factors for neurodevelopmental outcome at 2 years of age for preterm infants. Neonatology 112(2):122–129. https://doi.org/10.1159/000464272
doi: 10.1159/000464272 pubmed: 28482345
Raghuram K, Yang J, Church PT, Cieslak Z, Synnes A, Mukerji A et al (2017) Head growth trajectory and neurodevelopmental outcomes in preterm neonates. Pediatrics. https://doi.org/10.1542/peds.2017-0216
doi: 10.1542/peds.2017-0216 pubmed: 28759409
Padilla-Gomes NF, Enriquez G, Acosta-Rojas R, Perapoch J, Hernandez-Andrade E, Gratacos E (2007) Prevalence of neonatal ultrasound brain lesions in premature infants with and without intrauterine growth restriction. Acta paediatrica (Oslo, Norway: 1992) 96(11):1582–1587. https://doi.org/10.1111/j.1651-2227.2007.00496.x
doi: 10.1111/j.1651-2227.2007.00496.x
Bauer M, Fast C, Haas J, Resch B, Lang U, Pertl B (2009) Cystic periventricular leukomalacia in preterm infants: an analysis of obstetric risk factors. Early Hum Dev 85(3):163–169. https://doi.org/10.1016/j.earlhumdev.2008.07.007
doi: 10.1016/j.earlhumdev.2008.07.007 pubmed: 18783900
Mahle WT, Tavani F, Zimmerman RA, Nicolson SC, Galli KK, Gaynor JW et al (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106(12 Suppl 1):I109–I114
pubmed: 12354718
McQuillen PS, Barkovich AJ, Hamrick SE, Perez M, Ward P, Glidden DV et al (2007) Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 38(2 Suppl):736–741. https://doi.org/10.1161/01.STR.0000247941.41234.90
doi: 10.1161/01.STR.0000247941.41234.90 pubmed: 17261728
Figueras F, Cruz-Martinez R, Sanz-Cortes M, Arranz A, Illa M, Botet F et al (2011) Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet Gynecol 38(3):288–294. https://doi.org/10.1002/uog.9041
doi: 10.1002/uog.9041 pubmed: 21557369
van Batenburg-Eddes T, de Groot L, Steegers EA, Hofman A, Jaddoe VW, Verhulst FC et al (2010) Fetal programming of infant neuromotor development: the generation R study. Pediatr Res 67(2):132–137. https://doi.org/10.1203/PDR.0b013e3181c2dc76
doi: 10.1203/PDR.0b013e3181c2dc76 pubmed: 19809381
Streja E, Miller JE, Wu C, Bech BH, Pedersen LH, Schendel DE et al (2015) Disproportionate fetal growth and the risk for congenital cerebral palsy in singleton births. PLoS ONE 10(5):e0126743. https://doi.org/10.1371/journal.pone.0126743
doi: 10.1371/journal.pone.0126743 pubmed: 25974407 pmcid: 4431832
Williams IA, Fifer WP, Andrews H (2015) Fetal growth and neurodevelopmental outcome in congenital heart disease. Pediatr Cardiol 36(6):1135–1144. https://doi.org/10.1007/s00246-015-1132-6
doi: 10.1007/s00246-015-1132-6 pubmed: 25753684 pmcid: 5289064
Fenton TR, Sauve RS (2007) Using the LMS method to calculate z-scores for the Fenton preterm infant growth chart. Eur J Clin Nutr 61(12):1380–1385. https://doi.org/10.1038/sj.ejcn.1602667
doi: 10.1038/sj.ejcn.1602667 pubmed: 17299469
Cole TJ (1989) Using the LMS method to measure skewness in the NCHS and Dutch National height standards. Ann Hum Biol 16(5):407–419. https://doi.org/10.1080/03014468900000532
doi: 10.1080/03014468900000532 pubmed: 2802520
Dimitropoulos A, McQuillen PS, Sethi V, Moosa A, Chau V, Xu D et al (2013) Brain injury and development in newborns with critical congenital heart disease. Neurology 81(3):241–248. https://doi.org/10.1212/WNL.0b013e31829bfdcf
doi: 10.1212/WNL.0b013e31829bfdcf pubmed: 23771484 pmcid: 3770166
Peyvandi S, Chau V, Guo T, Xu D, Glass HC, Synnes A et al (2018) Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease. J Am Coll Cardiol 71(18):1986–1996. https://doi.org/10.1016/j.jacc.2018.02.068
doi: 10.1016/j.jacc.2018.02.068 pubmed: 29724352 pmcid: 5940013
Huppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11(6):489–497. https://doi.org/10.1016/j.siny.2006.07.006
doi: 10.1016/j.siny.2006.07.006 pubmed: 16962837
Hansen T, Henriksen TB, Bach CC, Matthiesen NB (2017) Congenital heart defects and measures of prenatal brain growth: a systematic review. Pediatr Neurol 72(7–18):e1. https://doi.org/10.1016/j.pediatrneurol.2017.03.014
doi: 10.1016/j.pediatrneurol.2017.03.014
Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr et al (2010) Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 121(1):26–33. https://doi.org/10.1161/CIRCULATIONAHA.109.865568
doi: 10.1161/CIRCULATIONAHA.109.865568 pubmed: 20026783
Ortinau CM, Mangin-Heimos K, Moen J, Alexopoulos D, Inder TE, Gholipour A et al (2018) Prenatal to postnatal trajectory of brain growth in complex congenital heart disease. Neuroimage Clin 20:913–922. https://doi.org/10.1016/j.nicl.2018.09.029
doi: 10.1016/j.nicl.2018.09.029 pubmed: 30308377 pmcid: 6178192
Parra-Saavedra M, Crovetto F, Triunfo S, Savchev S, Peguero A, Nadal A et al (2014) Neurodevelopmental outcomes of near-term small-for-gestational-age infants with and without signs of placental underperfusion. Placenta 35(4):269–274. https://doi.org/10.1016/j.placenta.2014.01.010
doi: 10.1016/j.placenta.2014.01.010 pubmed: 24529945
Hernandez-Andrade E, Figueroa-Diesel H, Jansson T, Rangel-Nava H, Gratacos E (2008) Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses. Ultrasound Obstet Gynecol 32(1):71–76. https://doi.org/10.1002/uog.5377
doi: 10.1002/uog.5377 pubmed: 18570240
Hernandez-Andrade E, Serralde JA, Cruz-Martinez R (2012) Can anomalies of fetal brain circulation be useful in the management of growth restricted fetuses? Prenat Diagn 32(2):103–112. https://doi.org/10.1002/pd.2913
doi: 10.1002/pd.2913 pubmed: 22418951
Spinillo A, Montanari L, Roccio M, Zanchi S, Tzialla C, Stronati M (2009) Prognostic significance of the interaction between abnormal umbilical and middle cerebral artery Doppler velocimetry in pregnancies complicated by fetal growth restriction. Acta Obstet Gynecol Scand 88(2):159–166. https://doi.org/10.1080/00016340802632358
doi: 10.1080/00016340802632358 pubmed: 19169929
Donofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW et al (2003) Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol 24(5):436–443. https://doi.org/10.1007/s00246-002-0404-0
doi: 10.1007/s00246-002-0404-0 pubmed: 14627309
Masoller N, Martinez JM, Gomez O, Bennasar M, Crispi F, Sanz-Cortes M et al (2014) Evidence of second-trimester changes in head biometry and brain perfusion in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 44(2):182–187. https://doi.org/10.1002/uog.13373
doi: 10.1002/uog.13373 pubmed: 24687311
Berg C, Gembruch O, Gembruch U, Geipel A (2009) Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect? Ultrasound Obstet Gynecol 34(6):666–672. https://doi.org/10.1002/uog.7474
doi: 10.1002/uog.7474 pubmed: 19953563
Schlatterer SD, Murnick J, Jacobs M, White L, Donofrio MT, Limperopoulos C (2019) Placental pathology and neuroimaging correlates in neonates with congenital heart disease. Sci Rep 9(1):4137. https://doi.org/10.1038/s41598-019-40894-y
doi: 10.1038/s41598-019-40894-y pubmed: 30858514 pmcid: 6411739
Ji W, Ferdman D, Copel J, Scheinost D, Shabanova V, Brueckner M et al (2020) De novo damaging variants associated with congenital heart diseases contribute to the connectome. Sci Rep 10(1):7046. https://doi.org/10.1038/s41598-020-63928-2
doi: 10.1038/s41598-020-63928-2 pubmed: 32341405 pmcid: 7184603
van Nisselrooij AEL, Jansen FAR, van Geloven N, Linskens IH, Pajkrt E, Clur SA et al (2020) Impact of extracardiac pathology on head growth in fetuses with congenital heart defect. Ultrasound Obstet Gynecol 55(2):217–225. https://doi.org/10.1002/uog.20260
doi: 10.1002/uog.20260 pubmed: 30868678
Rychik J, Goff D, McKay E, Mott A, Tian Z, Licht DJ et al (2018) Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation. Pediatr Cardiol 39(6):1165–1171. https://doi.org/10.1007/s00246-018-1876-x
doi: 10.1007/s00246-018-1876-x pubmed: 29728721 pmcid: 6096845
Jones HN, Olbrych SK, Smith KL, Cnota JF, Habli M, Ramos-Gonzales O et al (2015) Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation. Placenta 36(10):1078–1086. https://doi.org/10.1016/j.placenta.2015.08.003
doi: 10.1016/j.placenta.2015.08.003 pubmed: 26278057 pmcid: 4609616
Matthiesen NB, Henriksen TB, Agergaard P, Gaynor JW, Bach CC, Hjortdal VE et al (2016) Congenital heart defects and indices of placental and fetal growth in a Nationwide Study of 924 422 liveborn infants. Circulation 134(20):1546–1556. https://doi.org/10.1161/CIRCULATIONAHA.116.021793
doi: 10.1161/CIRCULATIONAHA.116.021793 pubmed: 27742737
Newburger JW, Wypij D, Bellinger DC, du Plessis AJ, Kuban KC, Rappaport LA et al (2003) Length of stay after infant heart surgery is related to cognitive outcome at age 8 years. J Pediatr 143(1):67–73. https://doi.org/10.1016/S0022-3476(03)00183-5
doi: 10.1016/S0022-3476(03)00183-5 pubmed: 12915826
Bellinger DC, Wypij D, duPlessis AJ, Rappaport LA, Jonas RA, Wernovsky G et al (2003) Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126(5):1385–1396. https://doi.org/10.1016/s0022-5223(03)00711-6
doi: 10.1016/s0022-5223(03)00711-6 pubmed: 14666010
Limperopoulos C, Majnemer A, Shevell MI, Rohlicek C, Rosenblatt B, Tchervenkov C et al (2002) Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr 141(1):51–58. https://doi.org/10.1067/mpd.2002.125227
doi: 10.1067/mpd.2002.125227 pubmed: 12091851
Forbess JM, Visconti KJ, Hancock-Friesen C, Howe RC, Bellinger DC, Jonas RA (2002) Neurodevelopmental outcome after congenital heart surgery: results from an institutional registry. Circulation 106(12 Suppl 1):I95-102
pubmed: 12354716
Peyvandi S, Kim H, Lau J, Barkovich AJ, Campbell A, Miller S et al (2018) The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease. J Thorac Cardiovasc Surg 155(1):291–300. https://doi.org/10.1016/j.jtcvs.2017.08.019
doi: 10.1016/j.jtcvs.2017.08.019 pubmed: 28918207
Courtney J, Troja W, Owens KJ, Brockway HM, Hinton AC, Hinton RB et al (2020) Abnormalities of placental development and function are associated with the different fetal growth patterns of hypoplastic left heart syndrome and transposition of the great arteries. Placenta 101:57–65. https://doi.org/10.1016/j.placenta.2020.09.007
doi: 10.1016/j.placenta.2020.09.007 pubmed: 32927345
Bellinger DC, Wypij D, Rivkin MJ, DeMaso DR, Robertson RL Jr, Dunbar-Masterson C et al (2011) Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation 124(12):1361–1369. https://doi.org/10.1161/CIRCULATIONAHA.111.026963
doi: 10.1161/CIRCULATIONAHA.111.026963 pubmed: 21875911 pmcid: 3217719
Guillen U, DeMauro S, Ma L, Zupancic J, Roberts R, Schmidt B et al (2012) Relationship between attrition and neurodevelopmental impairment rates in extremely preterm infants at 18 to 24 months: a systematic review. Arch Pediatr Adolesc Med 166(2):178–184. https://doi.org/10.1001/archpediatrics.2011.616
doi: 10.1001/archpediatrics.2011.616 pubmed: 22312176

Auteurs

Shalin A Parekh (SA)

Division of Cardiology, Department of Pediatrics, Benioff Children's Hospital, University of California, Mission Hall Box 0544, 550 16th Street, 5th Floor, San Francisco, CA, 94158, USA.

Stephany M Cox (SM)

Division of Developmental Pediatrics and Cardiology, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, USA.

A James Barkovich (AJ)

Department of Radiology, University of California, San Francisco, USA.

Vann Chau (V)

Department of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.

Martina A Steurer (MA)

Division of Critical Care, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, USA.

Duan Xu (D)

Department of Radiology, University of California, San Francisco, USA.

Steven P Miller (SP)

Department of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.

Patrick S McQuillen (PS)

Division of Critical Care, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, USA.

Shabnam Peyvandi (S)

Division of Cardiology, Department of Pediatrics, Benioff Children's Hospital, University of California, Mission Hall Box 0544, 550 16th Street, 5th Floor, San Francisco, CA, 94158, USA. shabnam.peyvandi@ucsf.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH