Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks.

convolutional neural networks false alarms intensive care unit monitors machine learning multi‐class classification

Journal

Journal of the American Heart Association
ISSN: 2047-9980
Titre abrégé: J Am Heart Assoc
Pays: England
ID NLM: 101580524

Informations de publication

Date de publication:
07 12 2021
Historique:
pubmed: 3 12 2021
medline: 24 3 2022
entrez: 2 12 2021
Statut: ppublish

Résumé

Background Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach. Methods and Results This study involves a total of 953 independent life-threatening arrhythmia alarms generated from the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photoplethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted to various arrhythmic conditions as well as multiple physiological signals. Our hybrid- convolutional neural network approach achieved superior performance compared with methods which only used convolutional neural network. We evaluated our algorithm using 5-fold cross-validation for 5 times and obtained an accuracy of 87.5%±0.5%, and a score of 81%±0.9%. Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall classification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability. Conclusions Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may significantly improve the quality of care in ICUs by reducing the burden of false alarms.

Identifiants

pubmed: 34854319
doi: 10.1161/JAHA.121.023222
pmc: PMC9075394
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e023222

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL135335
Pays : United States
Organisme : NIBIB NIH HHS
ID : R21 EB026164
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL137870
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000170
Pays : United States

Références

Comput Methods Programs Biomed. 1990 Jan;31(1):1-10
pubmed: 2311364
IEEE Trans Biomed Eng. 2004 Jul;51(7):1196-206
pubmed: 15248536
J Am Heart Assoc. 2020 Feb 18;9(4):e013924
pubmed: 32067584
Intensive Care Med. 2006 Mar;32(3):345-8
pubmed: 16496202
Nat Med. 2019 Jan;25(1):65-69
pubmed: 30617320
Comput Methods Programs Biomed. 1991 Feb-Mar;34(2-3):139-44
pubmed: 2060287
PLoS One. 2014 Oct 22;9(10):e110274
pubmed: 25338067
Physiol Meas. 2016 Aug;37(8):1253-72
pubmed: 27454417
J Electrocardiol. 2012 Nov-Dec;45(6):588-91
pubmed: 23022300
Bioinformatics. 2010 May 15;26(10):1340-7
pubmed: 20385727
IEEE J Biomed Health Inform. 2015 May;19(3):832-8
pubmed: 25069129
Physiol Meas. 2016 Aug;37(8):1204-16
pubmed: 27454128
Crit Care Med. 1997 Apr;25(4):614-9
pubmed: 9142025
Comput Methods Programs Biomed. 2020 Dec;197:105740
pubmed: 32932129
J Med Internet Res. 2019 Nov 26;21(11):e15406
pubmed: 31769762
Physiol Meas. 2016 Aug;37(8):1186-203
pubmed: 27454017
Med Biol Eng Comput. 2004 Sep;42(5):698-706
pubmed: 15503972
Physiol Meas. 2016 Aug;37(8):1233-52
pubmed: 27454256
J Electrocardiol. 2014 Nov-Dec;47(6):775-80
pubmed: 25172188
J Electrocardiol. 2012 Nov-Dec;45(6):596-603
pubmed: 22960167
Neural Comput. 1998 Sep 15;10(7):1895-1923
pubmed: 9744903
Psychometrika. 1947 Jun;12(2):153-7
pubmed: 20254758
J Am Coll Cardiol. 2021 Jan 26;77(3):300-313
pubmed: 33478654
Sensors (Basel). 2015 Feb 09;15(2):3952-74
pubmed: 25671512
J Biomed Inform. 2008 Jun;41(3):442-51
pubmed: 18440873
IEEE Trans Biomed Eng. 2019 Mar;66(3):710-717
pubmed: 30004868
Eur Heart J Digit Health. 2021 Jul 01;2(3):437-445
pubmed: 34604758
Physiol Meas. 2016 Aug;37(8):1217-32
pubmed: 27454171
Physiol Meas. 2016 Aug;37(8):E5-E23
pubmed: 27454172
NPJ Digit Med. 2019 Sep 5;2:86
pubmed: 31508497
Heart Fail Rev. 2021 Jan;26(1):23-34
pubmed: 32720083
IEEE Trans Biomed Eng. 2011 Oct;58(10):2748-57
pubmed: 21324772
Physiol Meas. 2016 Aug;37(8):1313-25
pubmed: 27454821

Auteurs

Sandeep Chandra Bollepalli (SC)

Cardiovascular Research Center Massachusetts General Hospital Boston MA.

Rahul K Sevakula (RK)

Cardiovascular Research Center Massachusetts General Hospital Boston MA.

Wan-Tai M Au-Yeung (WM)

Cardiovascular Research Center Massachusetts General Hospital Boston MA.

Mohamad B Kassab (MB)

Cardiovascular Research Center Massachusetts General Hospital Boston MA.

Faisal M Merchant (FM)

Cardiology Division Emory University School of Medicine Atlanta GA.

George Bazoukis (G)

Second Department of Cardiology Evangelismos General Hospital of Athens Athens Greece.

Richard Boyer (R)

Anesthesia Department Massachusetts General Hospital Boston MA.

Eric M Isselbacher (EM)

Healthcare Transformation Lab Massachusetts General Hospital Boston MA.

Antonis A Armoundas (AA)

Cardiovascular Research Center Massachusetts General Hospital Boston MA.
Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH